![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sselid | Unicode version |
Description: Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.) |
Ref | Expression |
---|---|
sseli.1 |
![]() ![]() ![]() ![]() |
sselid.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sselid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sselid.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sseli.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | sseli 3166 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-in 3150 df-ss 3157 |
This theorem is referenced by: mptrcl 5619 riotacl 5866 riotasbc 5867 elmpocl 6091 ofrval 6117 f1od2 6260 mpoxopn0yelv 6264 tpostpos 6289 smores 6317 supubti 7028 suplubti 7029 nninfwlporlemd 7200 nninfwlporlem 7201 nninfwlpoimlemg 7203 nninfwlpoimlemginf 7204 prarloclemcalc 7531 rereceu 7918 recriota 7919 rexrd 8037 eqord1 8470 nnred 8962 nncnd 8963 un0addcl 9239 un0mulcl 9240 nnnn0d 9259 nn0red 9260 nn0xnn0d 9278 suprzclex 9381 nn0zd 9403 zred 9405 rpred 9726 ige2m1fz 10140 zmodfzp1 10379 seq3caopr2 10513 expcl2lemap 10563 m1expcl 10574 summodclem2a 11421 zsumdc 11424 clim2prod 11579 ntrivcvgap 11588 prodmodclem2a 11616 zproddc 11619 zsupssdc 11987 lcmn0cl 12100 isprm5lem 12173 eulerthlemrprm 12261 eulerthlema 12262 eulerthlemh 12263 eulerthlemth 12264 prmdivdiv 12269 4sqlem13m 12435 4sqlem14 12436 4sqlem17 12439 ennnfonelemg 12454 relelbasov 12574 nmzsubg 13149 conjnmz 13218 conjnmzb 13219 lmrcl 14148 lmss 14203 upxp 14229 isxms2 14409 iooretopg 14485 tgqioo 14504 limccoap 14604 dvcl 14609 dvidlemap 14617 dvcnp2cntop 14620 wilthlem1 14855 lgscl 14873 2sqlem6 14925 2sqlem8 14928 2sqlem9 14929 isomninnlem 15237 trilpolemeq1 15247 trilpolemlt1 15248 iswomninnlem 15256 iswomni0 15258 ismkvnnlem 15259 nconstwlpolemgt0 15271 |
Copyright terms: Public domain | W3C validator |