ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelssi Unicode version

Theorem onelssi 4289
Description: A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
onelssi  |-  ( B  e.  A  ->  B  C_  A )

Proof of Theorem onelssi
StepHypRef Expression
1 on.1 . 2  |-  A  e.  On
2 onelss 4247 . 2  |-  ( A  e.  On  ->  ( B  e.  A  ->  B 
C_  A ) )
31, 2ax-mp 7 1  |-  ( B  e.  A  ->  B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1448    C_ wss 3021   Oncon0 4223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-in 3027  df-ss 3034  df-uni 3684  df-tr 3967  df-iord 4226  df-on 4228
This theorem is referenced by:  onelini  4290  oneluni  4291  omp1eomlem  6894  enumctlemm  6913  ennnfonelemdc  11704  ennnfonelemg  11708  ctinfom  11733  isomninnlem  12809
  Copyright terms: Public domain W3C validator