ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oneluni Unicode version

Theorem oneluni 4460
Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
oneluni  |-  ( B  e.  A  ->  ( A  u.  B )  =  A )

Proof of Theorem oneluni
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onelssi 4458 . 2  |-  ( B  e.  A  ->  B  C_  A )
3 ssequn2 3332 . 2  |-  ( B 
C_  A  <->  ( A  u.  B )  =  A )
42, 3sylib 122 1  |-  ( B  e.  A  ->  ( A  u.  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    u. cun 3151    C_ wss 3153   Oncon0 4392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4395  df-on 4397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator