ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oneluni Unicode version

Theorem oneluni 4446
Description: An ordinal number equals its union with any element. (Contributed by NM, 13-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
oneluni  |-  ( B  e.  A  ->  ( A  u.  B )  =  A )

Proof of Theorem oneluni
StepHypRef Expression
1 on.1 . . 3  |-  A  e.  On
21onelssi 4444 . 2  |-  ( B  e.  A  ->  B  C_  A )
3 ssequn2 3323 . 2  |-  ( B 
C_  A  <->  ( A  u.  B )  =  A )
42, 3sylib 122 1  |-  ( B  e.  A  ->  ( A  u.  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160    u. cun 3142    C_ wss 3144   Oncon0 4378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-uni 3825  df-tr 4117  df-iord 4381  df-on 4383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator