ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq123d Unicode version

Theorem oteq123d 3756
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
oteq1d.1  |-  ( ph  ->  A  =  B )
oteq123d.2  |-  ( ph  ->  C  =  D )
oteq123d.3  |-  ( ph  ->  E  =  F )
Assertion
Ref Expression
oteq123d  |-  ( ph  -> 
<. A ,  C ,  E >.  =  <. B ,  D ,  F >. )

Proof of Theorem oteq123d
StepHypRef Expression
1 oteq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21oteq1d 3753 . 2  |-  ( ph  -> 
<. A ,  C ,  E >.  =  <. B ,  C ,  E >. )
3 oteq123d.2 . . 3  |-  ( ph  ->  C  =  D )
43oteq2d 3754 . 2  |-  ( ph  -> 
<. B ,  C ,  E >.  =  <. B ,  D ,  E >. )
5 oteq123d.3 . . 3  |-  ( ph  ->  E  =  F )
65oteq3d 3755 . 2  |-  ( ph  -> 
<. B ,  D ,  E >.  =  <. B ,  D ,  F >. )
72, 4, 63eqtrd 2194 1  |-  ( ph  -> 
<. A ,  C ,  E >.  =  <. B ,  D ,  F >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335   <.cotp 3564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-sn 3566  df-pr 3567  df-op 3569  df-ot 3570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator