ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq123d Unicode version

Theorem oteq123d 3773
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
oteq1d.1  |-  ( ph  ->  A  =  B )
oteq123d.2  |-  ( ph  ->  C  =  D )
oteq123d.3  |-  ( ph  ->  E  =  F )
Assertion
Ref Expression
oteq123d  |-  ( ph  -> 
<. A ,  C ,  E >.  =  <. B ,  D ,  F >. )

Proof of Theorem oteq123d
StepHypRef Expression
1 oteq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21oteq1d 3770 . 2  |-  ( ph  -> 
<. A ,  C ,  E >.  =  <. B ,  C ,  E >. )
3 oteq123d.2 . . 3  |-  ( ph  ->  C  =  D )
43oteq2d 3771 . 2  |-  ( ph  -> 
<. B ,  C ,  E >.  =  <. B ,  D ,  E >. )
5 oteq123d.3 . . 3  |-  ( ph  ->  E  =  F )
65oteq3d 3772 . 2  |-  ( ph  -> 
<. B ,  D ,  E >.  =  <. B ,  D ,  F >. )
72, 4, 63eqtrd 2202 1  |-  ( ph  -> 
<. A ,  C ,  E >.  =  <. B ,  D ,  F >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   <.cotp 3580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-ot 3586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator