ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq123d Unicode version

Theorem oteq123d 3823
Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
oteq1d.1  |-  ( ph  ->  A  =  B )
oteq123d.2  |-  ( ph  ->  C  =  D )
oteq123d.3  |-  ( ph  ->  E  =  F )
Assertion
Ref Expression
oteq123d  |-  ( ph  -> 
<. A ,  C ,  E >.  =  <. B ,  D ,  F >. )

Proof of Theorem oteq123d
StepHypRef Expression
1 oteq1d.1 . . 3  |-  ( ph  ->  A  =  B )
21oteq1d 3820 . 2  |-  ( ph  -> 
<. A ,  C ,  E >.  =  <. B ,  C ,  E >. )
3 oteq123d.2 . . 3  |-  ( ph  ->  C  =  D )
43oteq2d 3821 . 2  |-  ( ph  -> 
<. B ,  C ,  E >.  =  <. B ,  D ,  E >. )
5 oteq123d.3 . . 3  |-  ( ph  ->  E  =  F )
65oteq3d 3822 . 2  |-  ( ph  -> 
<. B ,  D ,  E >.  =  <. B ,  D ,  F >. )
72, 4, 63eqtrd 2233 1  |-  ( ph  -> 
<. A ,  C ,  E >.  =  <. B ,  D ,  F >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cotp 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-ot 3632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator