| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oteq123d | GIF version | ||
| Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| oteq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| oteq123d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| oteq123d.3 | ⊢ (𝜑 → 𝐸 = 𝐹) |
| Ref | Expression |
|---|---|
| oteq123d | ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oteq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | oteq1d 3845 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐶, 𝐸〉) |
| 3 | oteq123d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | oteq2d 3846 | . 2 ⊢ (𝜑 → 〈𝐵, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐸〉) |
| 5 | oteq123d.3 | . . 3 ⊢ (𝜑 → 𝐸 = 𝐹) | |
| 6 | 5 | oteq3d 3847 | . 2 ⊢ (𝜑 → 〈𝐵, 𝐷, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
| 7 | 2, 4, 6 | 3eqtrd 2244 | 1 ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 〈cotp 3647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-ot 3653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |