ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmopab3 Unicode version

Theorem dmopab3 4935
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopab3  |-  ( A. x  e.  A  E. y ph  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem dmopab3
StepHypRef Expression
1 df-ral 2513 . 2  |-  ( A. x  e.  A  E. y ph  <->  A. x ( x  e.  A  ->  E. y ph ) )
2 pm4.71 389 . . 3  |-  ( ( x  e.  A  ->  E. y ph )  <->  ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) ) )
32albii 1516 . 2  |-  ( A. x ( x  e.  A  ->  E. y ph )  <->  A. x ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) ) )
4 dmopab 4933 . . . . 5  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  { x  |  E. y ( x  e.  A  /\  ph ) }
5 19.42v 1953 . . . . . 6  |-  ( E. y ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  E. y ph ) )
65abbii 2345 . . . . 5  |-  { x  |  E. y ( x  e.  A  /\  ph ) }  =  {
x  |  ( x  e.  A  /\  E. y ph ) }
74, 6eqtri 2250 . . . 4  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  { x  |  ( x  e.  A  /\  E. y ph ) }
87eqeq1i 2237 . . 3  |-  ( dom 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  =  A  <->  { x  |  ( x  e.  A  /\  E. y ph ) }  =  A )
9 eqcom 2231 . . 3  |-  ( A  =  { x  |  ( x  e.  A  /\  E. y ph ) } 
<->  { x  |  ( x  e.  A  /\  E. y ph ) }  =  A )
10 abeq2 2338 . . 3  |-  ( A  =  { x  |  ( x  e.  A  /\  E. y ph ) } 
<-> 
A. x ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) ) )
118, 9, 103bitr2ri 209 . 2  |-  ( A. x ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) )  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
121, 3, 113bitri 206 1  |-  ( A. x  e.  A  E. y ph  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   A.wral 2508   {copab 4143   dom cdm 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-dm 4728
This theorem is referenced by:  dmxpm  4943  dmxpid  4944  fnopabg  5446  acfun  7385  ccfunen  7446
  Copyright terms: Public domain W3C validator