ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmopab3 Unicode version

Theorem dmopab3 4890
Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopab3  |-  ( A. x  e.  A  E. y ph  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem dmopab3
StepHypRef Expression
1 df-ral 2488 . 2  |-  ( A. x  e.  A  E. y ph  <->  A. x ( x  e.  A  ->  E. y ph ) )
2 pm4.71 389 . . 3  |-  ( ( x  e.  A  ->  E. y ph )  <->  ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) ) )
32albii 1492 . 2  |-  ( A. x ( x  e.  A  ->  E. y ph )  <->  A. x ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) ) )
4 dmopab 4888 . . . . 5  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  { x  |  E. y ( x  e.  A  /\  ph ) }
5 19.42v 1929 . . . . . 6  |-  ( E. y ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  E. y ph ) )
65abbii 2320 . . . . 5  |-  { x  |  E. y ( x  e.  A  /\  ph ) }  =  {
x  |  ( x  e.  A  /\  E. y ph ) }
74, 6eqtri 2225 . . . 4  |-  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  { x  |  ( x  e.  A  /\  E. y ph ) }
87eqeq1i 2212 . . 3  |-  ( dom 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  =  A  <->  { x  |  ( x  e.  A  /\  E. y ph ) }  =  A )
9 eqcom 2206 . . 3  |-  ( A  =  { x  |  ( x  e.  A  /\  E. y ph ) } 
<->  { x  |  ( x  e.  A  /\  E. y ph ) }  =  A )
10 abeq2 2313 . . 3  |-  ( A  =  { x  |  ( x  e.  A  /\  E. y ph ) } 
<-> 
A. x ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) ) )
118, 9, 103bitr2ri 209 . 2  |-  ( A. x ( x  e.  A  <->  ( x  e.  A  /\  E. y ph ) )  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
121, 3, 113bitri 206 1  |-  ( A. x  e.  A  E. y ph  <->  dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1370    = wceq 1372   E.wex 1514    e. wcel 2175   {cab 2190   A.wral 2483   {copab 4103   dom cdm 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-dm 4684
This theorem is referenced by:  dmxpm  4897  dmxpid  4898  fnopabg  5398  acfun  7318  ccfunen  7375
  Copyright terms: Public domain W3C validator