| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmopab3 | Unicode version | ||
| Description: The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.) |
| Ref | Expression |
|---|---|
| dmopab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 |
. 2
| |
| 2 | pm4.71 389 |
. . 3
| |
| 3 | 2 | albii 1493 |
. 2
|
| 4 | dmopab 4889 |
. . . . 5
| |
| 5 | 19.42v 1930 |
. . . . . 6
| |
| 6 | 5 | abbii 2321 |
. . . . 5
|
| 7 | 4, 6 | eqtri 2226 |
. . . 4
|
| 8 | 7 | eqeq1i 2213 |
. . 3
|
| 9 | eqcom 2207 |
. . 3
| |
| 10 | abeq2 2314 |
. . 3
| |
| 11 | 8, 9, 10 | 3bitr2ri 209 |
. 2
|
| 12 | 1, 3, 11 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-dm 4685 |
| This theorem is referenced by: dmxpm 4898 dmxpid 4899 fnopabg 5399 acfun 7319 ccfunen 7376 |
| Copyright terms: Public domain | W3C validator |