ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disj3 Unicode version

Theorem disj3 3317
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
disj3  |-  ( ( A  i^i  B )  =  (/)  <->  A  =  ( A  \  B ) )

Proof of Theorem disj3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pm4.71 381 . . . 4  |-  ( ( x  e.  A  ->  -.  x  e.  B
)  <->  ( x  e.  A  <->  ( x  e.  A  /\  -.  x  e.  B ) ) )
2 eldif 2993 . . . . 5  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
32bibi2i 225 . . . 4  |-  ( ( x  e.  A  <->  x  e.  ( A  \  B ) )  <->  ( x  e.  A  <->  ( x  e.  A  /\  -.  x  e.  B ) ) )
41, 3bitr4i 185 . . 3  |-  ( ( x  e.  A  ->  -.  x  e.  B
)  <->  ( x  e.  A  <->  x  e.  ( A  \  B ) ) )
54albii 1400 . 2  |-  ( A. x ( x  e.  A  ->  -.  x  e.  B )  <->  A. x
( x  e.  A  <->  x  e.  ( A  \  B ) ) )
6 disj1 3315 . 2  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
7 dfcleq 2077 . 2  |-  ( A  =  ( A  \  B )  <->  A. x
( x  e.  A  <->  x  e.  ( A  \  B ) ) )
85, 6, 73bitr4i 210 1  |-  ( ( A  i^i  B )  =  (/)  <->  A  =  ( A  \  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1283    = wceq 1285    e. wcel 1434    \ cdif 2981    i^i cin 2983   (/)c0 3269
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-v 2614  df-dif 2986  df-in 2990  df-nul 3270
This theorem is referenced by:  disjel  3319  uneqdifeqim  3349  difprsn1  3550  diftpsn3  3552  orddif  4325  phpm  6509
  Copyright terms: Public domain W3C validator