Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > disj3 | Unicode version |
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 19-May-1998.) |
Ref | Expression |
---|---|
disj3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71 387 | . . . 4 | |
2 | eldif 3107 | . . . . 5 | |
3 | 2 | bibi2i 226 | . . . 4 |
4 | 1, 3 | bitr4i 186 | . . 3 |
5 | 4 | albii 1447 | . 2 |
6 | disj1 3440 | . 2 | |
7 | dfcleq 2148 | . 2 | |
8 | 5, 6, 7 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wal 1330 wceq 1332 wcel 2125 cdif 3095 cin 3097 c0 3390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-dif 3100 df-in 3104 df-nul 3391 |
This theorem is referenced by: disjel 3444 uneqdifeqim 3475 difprsn1 3691 diftpsn3 3693 orddif 4500 phpm 6799 |
Copyright terms: Public domain | W3C validator |