| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabid2 | Unicode version | ||
| Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rabid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeq2 2314 |
. . 3
| |
| 2 | pm4.71 389 |
. . . 4
| |
| 3 | 2 | albii 1493 |
. . 3
|
| 4 | 1, 3 | bitr4i 187 |
. 2
|
| 5 | df-rab 2493 |
. . 3
| |
| 6 | 5 | eqeq2i 2216 |
. 2
|
| 7 | df-ral 2489 |
. 2
| |
| 8 | 4, 6, 7 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-ral 2489 df-rab 2493 |
| This theorem is referenced by: rabxmdc 3492 rabrsndc 3701 class2seteq 4207 dmmptg 5180 dmmptd 5406 fneqeql 5688 fmpt 5730 acexmidlemph 5937 inffiexmid 7003 ssfirab 7033 exmidaclem 7320 ioomax 10070 iccmax 10071 dfphi2 12542 phiprmpw 12544 phisum 12563 unennn 12768 znnen 12769 isnsg4 13548 lssuni 14125 psrbagfi 14435 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |