Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabid2 | Unicode version |
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rabid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2279 | . . 3 | |
2 | pm4.71 387 | . . . 4 | |
3 | 2 | albii 1463 | . . 3 |
4 | 1, 3 | bitr4i 186 | . 2 |
5 | df-rab 2457 | . . 3 | |
6 | 5 | eqeq2i 2181 | . 2 |
7 | df-ral 2453 | . 2 | |
8 | 4, 6, 7 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wcel 2141 cab 2156 wral 2448 crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-rab 2457 |
This theorem is referenced by: rabxmdc 3446 rabrsndc 3651 class2seteq 4149 dmmptg 5108 dmmptd 5328 fneqeql 5604 fmpt 5646 acexmidlemph 5846 inffiexmid 6884 ssfirab 6911 exmidaclem 7185 ioomax 9905 iccmax 9906 dfphi2 12174 phiprmpw 12176 phisum 12194 unennn 12352 znnen 12353 |
Copyright terms: Public domain | W3C validator |