Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabid2 | Unicode version |
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
rabid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2275 | . . 3 | |
2 | pm4.71 387 | . . . 4 | |
3 | 2 | albii 1458 | . . 3 |
4 | 1, 3 | bitr4i 186 | . 2 |
5 | df-rab 2453 | . . 3 | |
6 | 5 | eqeq2i 2176 | . 2 |
7 | df-ral 2449 | . 2 | |
8 | 4, 6, 7 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 cab 2151 wral 2444 crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-rab 2453 |
This theorem is referenced by: rabxmdc 3440 rabrsndc 3644 class2seteq 4142 dmmptg 5101 dmmptd 5318 fneqeql 5593 fmpt 5635 acexmidlemph 5835 inffiexmid 6872 ssfirab 6899 exmidaclem 7164 ioomax 9884 iccmax 9885 dfphi2 12152 phiprmpw 12154 phisum 12172 unennn 12330 znnen 12331 |
Copyright terms: Public domain | W3C validator |