ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabid2 Unicode version

Theorem rabid2 2565
Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
rabid2  |-  ( A  =  { x  e.  A  |  ph }  <->  A. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rabid2
StepHypRef Expression
1 abeq2 2208 . . 3  |-  ( A  =  { x  |  ( x  e.  A  /\  ph ) }  <->  A. x
( x  e.  A  <->  ( x  e.  A  /\  ph ) ) )
2 pm4.71 384 . . . 4  |-  ( ( x  e.  A  ->  ph )  <->  ( x  e.  A  <->  ( x  e.  A  /\  ph )
) )
32albii 1414 . . 3  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. x
( x  e.  A  <->  ( x  e.  A  /\  ph ) ) )
41, 3bitr4i 186 . 2  |-  ( A  =  { x  |  ( x  e.  A  /\  ph ) }  <->  A. x
( x  e.  A  ->  ph ) )
5 df-rab 2384 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
65eqeq2i 2110 . 2  |-  ( A  =  { x  e.  A  |  ph }  <->  A  =  { x  |  ( x  e.  A  /\  ph ) } )
7 df-ral 2380 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
84, 6, 73bitr4i 211 1  |-  ( A  =  { x  e.  A  |  ph }  <->  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1297    = wceq 1299    e. wcel 1448   {cab 2086   A.wral 2375   {crab 2379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-11 1452  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-ral 2380  df-rab 2384
This theorem is referenced by:  rabxmdc  3341  rabrsndc  3538  class2seteq  4027  dmmptg  4972  dmmptd  5189  fneqeql  5460  fmpt  5502  acexmidlemph  5699  inffiexmid  6729  ssfirab  6750  ioomax  9572  iccmax  9573  dfphi2  11688  phiprmpw  11690  unennn  11702  znnen  11703
  Copyright terms: Public domain W3C validator