| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabid2 | Unicode version | ||
| Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| rabid2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeq2 2305 |
. . 3
| |
| 2 | pm4.71 389 |
. . . 4
| |
| 3 | 2 | albii 1484 |
. . 3
|
| 4 | 1, 3 | bitr4i 187 |
. 2
|
| 5 | df-rab 2484 |
. . 3
| |
| 6 | 5 | eqeq2i 2207 |
. 2
|
| 7 | df-ral 2480 |
. 2
| |
| 8 | 4, 6, 7 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-rab 2484 |
| This theorem is referenced by: rabxmdc 3483 rabrsndc 3691 class2seteq 4197 dmmptg 5168 dmmptd 5389 fneqeql 5671 fmpt 5713 acexmidlemph 5916 inffiexmid 6968 ssfirab 6998 exmidaclem 7277 ioomax 10025 iccmax 10026 dfphi2 12398 phiprmpw 12400 phisum 12419 unennn 12624 znnen 12625 isnsg4 13352 lssuni 13929 lgsquadlem2 15329 |
| Copyright terms: Public domain | W3C validator |