Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > releldm2 | Unicode version |
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
releldm2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . . 3 | |
2 | 1 | anim2i 340 | . 2 |
3 | id 19 | . . . . 5 | |
4 | vex 2729 | . . . . . 6 | |
5 | 1stexg 6135 | . . . . . 6 | |
6 | 4, 5 | ax-mp 5 | . . . . 5 |
7 | 3, 6 | eqeltrrdi 2258 | . . . 4 |
8 | 7 | rexlimivw 2579 | . . 3 |
9 | 8 | anim2i 340 | . 2 |
10 | eldm2g 4800 | . . . 4 | |
11 | 10 | adantl 275 | . . 3 |
12 | df-rel 4611 | . . . . . . . . 9 | |
13 | ssel 3136 | . . . . . . . . 9 | |
14 | 12, 13 | sylbi 120 | . . . . . . . 8 |
15 | 14 | imp 123 | . . . . . . 7 |
16 | op1steq 6147 | . . . . . . 7 | |
17 | 15, 16 | syl 14 | . . . . . 6 |
18 | 17 | rexbidva 2463 | . . . . 5 |
19 | 18 | adantr 274 | . . . 4 |
20 | rexcom4 2749 | . . . . 5 | |
21 | risset 2494 | . . . . . 6 | |
22 | 21 | exbii 1593 | . . . . 5 |
23 | 20, 22 | bitr4i 186 | . . . 4 |
24 | 19, 23 | bitrdi 195 | . . 3 |
25 | 11, 24 | bitr4d 190 | . 2 |
26 | 2, 9, 25 | pm5.21nd 906 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wrex 2445 cvv 2726 wss 3116 cop 3579 cxp 4602 cdm 4604 wrel 4609 cfv 5188 c1st 6106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: reldm 6154 |
Copyright terms: Public domain | W3C validator |