ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldm2 Unicode version

Theorem releldm2 6331
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
releldm2  |-  ( Rel 
A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem releldm2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2811 . . 3  |-  ( B  e.  dom  A  ->  B  e.  _V )
21anim2i 342 . 2  |-  ( ( Rel  A  /\  B  e.  dom  A )  -> 
( Rel  A  /\  B  e.  _V )
)
3 id 19 . . . . 5  |-  ( ( 1st `  x )  =  B  ->  ( 1st `  x )  =  B )
4 vex 2802 . . . . . 6  |-  x  e. 
_V
5 1stexg 6313 . . . . . 6  |-  ( x  e.  _V  ->  ( 1st `  x )  e. 
_V )
64, 5ax-mp 5 . . . . 5  |-  ( 1st `  x )  e.  _V
73, 6eqeltrrdi 2321 . . . 4  |-  ( ( 1st `  x )  =  B  ->  B  e.  _V )
87rexlimivw 2644 . . 3  |-  ( E. x  e.  A  ( 1st `  x )  =  B  ->  B  e.  _V )
98anim2i 342 . 2  |-  ( ( Rel  A  /\  E. x  e.  A  ( 1st `  x )  =  B )  ->  ( Rel  A  /\  B  e. 
_V ) )
10 eldm2g 4919 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  dom  A  <->  E. y <. B ,  y >.  e.  A ) )
1110adantl 277 . . 3  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( B  e.  dom  A  <->  E. y <. B ,  y >.  e.  A ) )
12 df-rel 4726 . . . . . . . . 9  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
13 ssel 3218 . . . . . . . . 9  |-  ( A 
C_  ( _V  X.  _V )  ->  ( x  e.  A  ->  x  e.  ( _V  X.  _V ) ) )
1412, 13sylbi 121 . . . . . . . 8  |-  ( Rel 
A  ->  ( x  e.  A  ->  x  e.  ( _V  X.  _V ) ) )
1514imp 124 . . . . . . 7  |-  ( ( Rel  A  /\  x  e.  A )  ->  x  e.  ( _V  X.  _V ) )
16 op1steq 6325 . . . . . . 7  |-  ( x  e.  ( _V  X.  _V )  ->  ( ( 1st `  x )  =  B  <->  E. y  x  =  <. B , 
y >. ) )
1715, 16syl 14 . . . . . 6  |-  ( ( Rel  A  /\  x  e.  A )  ->  (
( 1st `  x
)  =  B  <->  E. y  x  =  <. B , 
y >. ) )
1817rexbidva 2527 . . . . 5  |-  ( Rel 
A  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. x  e.  A  E. y  x  =  <. B ,  y >.
) )
1918adantr 276 . . . 4  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. x  e.  A  E. y  x  =  <. B , 
y >. ) )
20 rexcom4 2823 . . . . 5  |-  ( E. x  e.  A  E. y  x  =  <. B ,  y >.  <->  E. y E. x  e.  A  x  =  <. B , 
y >. )
21 risset 2558 . . . . . 6  |-  ( <. B ,  y >.  e.  A  <->  E. x  e.  A  x  =  <. B , 
y >. )
2221exbii 1651 . . . . 5  |-  ( E. y <. B ,  y
>.  e.  A  <->  E. y E. x  e.  A  x  =  <. B , 
y >. )
2320, 22bitr4i 187 . . . 4  |-  ( E. x  e.  A  E. y  x  =  <. B ,  y >.  <->  E. y <. B ,  y >.  e.  A )
2419, 23bitrdi 196 . . 3  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. y <. B ,  y >.  e.  A ) )
2511, 24bitr4d 191 . 2  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
262, 9, 25pm5.21nd 921 1  |-  ( Rel 
A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   _Vcvv 2799    C_ wss 3197   <.cop 3669    X. cxp 4717   dom cdm 4719   Rel wrel 4724   ` cfv 5318   1stc1st 6284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6286  df-2nd 6287
This theorem is referenced by:  reldm  6332
  Copyright terms: Public domain W3C validator