Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > releldm2 | Unicode version |
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
releldm2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . . 3 | |
2 | 1 | anim2i 340 | . 2 |
3 | id 19 | . . . . 5 | |
4 | vex 2733 | . . . . . 6 | |
5 | 1stexg 6146 | . . . . . 6 | |
6 | 4, 5 | ax-mp 5 | . . . . 5 |
7 | 3, 6 | eqeltrrdi 2262 | . . . 4 |
8 | 7 | rexlimivw 2583 | . . 3 |
9 | 8 | anim2i 340 | . 2 |
10 | eldm2g 4807 | . . . 4 | |
11 | 10 | adantl 275 | . . 3 |
12 | df-rel 4618 | . . . . . . . . 9 | |
13 | ssel 3141 | . . . . . . . . 9 | |
14 | 12, 13 | sylbi 120 | . . . . . . . 8 |
15 | 14 | imp 123 | . . . . . . 7 |
16 | op1steq 6158 | . . . . . . 7 | |
17 | 15, 16 | syl 14 | . . . . . 6 |
18 | 17 | rexbidva 2467 | . . . . 5 |
19 | 18 | adantr 274 | . . . 4 |
20 | rexcom4 2753 | . . . . 5 | |
21 | risset 2498 | . . . . . 6 | |
22 | 21 | exbii 1598 | . . . . 5 |
23 | 20, 22 | bitr4i 186 | . . . 4 |
24 | 19, 23 | bitrdi 195 | . . 3 |
25 | 11, 24 | bitr4d 190 | . 2 |
26 | 2, 9, 25 | pm5.21nd 911 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wrex 2449 cvv 2730 wss 3121 cop 3586 cxp 4609 cdm 4611 wrel 4616 cfv 5198 c1st 6117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: reldm 6165 |
Copyright terms: Public domain | W3C validator |