Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > releldm2 | Unicode version |
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
releldm2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2720 | . . 3 | |
2 | 1 | anim2i 340 | . 2 |
3 | id 19 | . . . . 5 | |
4 | vex 2712 | . . . . . 6 | |
5 | 1stexg 6105 | . . . . . 6 | |
6 | 4, 5 | ax-mp 5 | . . . . 5 |
7 | 3, 6 | eqeltrrdi 2246 | . . . 4 |
8 | 7 | rexlimivw 2567 | . . 3 |
9 | 8 | anim2i 340 | . 2 |
10 | eldm2g 4775 | . . . 4 | |
11 | 10 | adantl 275 | . . 3 |
12 | df-rel 4586 | . . . . . . . . 9 | |
13 | ssel 3118 | . . . . . . . . 9 | |
14 | 12, 13 | sylbi 120 | . . . . . . . 8 |
15 | 14 | imp 123 | . . . . . . 7 |
16 | op1steq 6117 | . . . . . . 7 | |
17 | 15, 16 | syl 14 | . . . . . 6 |
18 | 17 | rexbidva 2451 | . . . . 5 |
19 | 18 | adantr 274 | . . . 4 |
20 | rexcom4 2732 | . . . . 5 | |
21 | risset 2482 | . . . . . 6 | |
22 | 21 | exbii 1582 | . . . . 5 |
23 | 20, 22 | bitr4i 186 | . . . 4 |
24 | 19, 23 | bitrdi 195 | . . 3 |
25 | 11, 24 | bitr4d 190 | . 2 |
26 | 2, 9, 25 | pm5.21nd 902 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wex 1469 wcel 2125 wrex 2433 cvv 2709 wss 3098 cop 3559 cxp 4577 cdm 4579 wrel 4584 cfv 5163 c1st 6076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fo 5169 df-fv 5171 df-1st 6078 df-2nd 6079 |
This theorem is referenced by: reldm 6124 |
Copyright terms: Public domain | W3C validator |