| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releldm2 | Unicode version | ||
| Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| releldm2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. . 3
| |
| 2 | 1 | anim2i 342 |
. 2
|
| 3 | id 19 |
. . . . 5
| |
| 4 | vex 2779 |
. . . . . 6
| |
| 5 | 1stexg 6276 |
. . . . . 6
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
|
| 7 | 3, 6 | eqeltrrdi 2299 |
. . . 4
|
| 8 | 7 | rexlimivw 2621 |
. . 3
|
| 9 | 8 | anim2i 342 |
. 2
|
| 10 | eldm2g 4893 |
. . . 4
| |
| 11 | 10 | adantl 277 |
. . 3
|
| 12 | df-rel 4700 |
. . . . . . . . 9
| |
| 13 | ssel 3195 |
. . . . . . . . 9
| |
| 14 | 12, 13 | sylbi 121 |
. . . . . . . 8
|
| 15 | 14 | imp 124 |
. . . . . . 7
|
| 16 | op1steq 6288 |
. . . . . . 7
| |
| 17 | 15, 16 | syl 14 |
. . . . . 6
|
| 18 | 17 | rexbidva 2505 |
. . . . 5
|
| 19 | 18 | adantr 276 |
. . . 4
|
| 20 | rexcom4 2800 |
. . . . 5
| |
| 21 | risset 2536 |
. . . . . 6
| |
| 22 | 21 | exbii 1629 |
. . . . 5
|
| 23 | 20, 22 | bitr4i 187 |
. . . 4
|
| 24 | 19, 23 | bitrdi 196 |
. . 3
|
| 25 | 11, 24 | bitr4d 191 |
. 2
|
| 26 | 2, 9, 25 | pm5.21nd 918 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fo 5296 df-fv 5298 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: reldm 6295 |
| Copyright terms: Public domain | W3C validator |