| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > releldm2 | Unicode version | ||
| Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
| Ref | Expression |
|---|---|
| releldm2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 |
. . 3
| |
| 2 | 1 | anim2i 342 |
. 2
|
| 3 | id 19 |
. . . . 5
| |
| 4 | vex 2766 |
. . . . . 6
| |
| 5 | 1stexg 6225 |
. . . . . 6
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . 5
|
| 7 | 3, 6 | eqeltrrdi 2288 |
. . . 4
|
| 8 | 7 | rexlimivw 2610 |
. . 3
|
| 9 | 8 | anim2i 342 |
. 2
|
| 10 | eldm2g 4862 |
. . . 4
| |
| 11 | 10 | adantl 277 |
. . 3
|
| 12 | df-rel 4670 |
. . . . . . . . 9
| |
| 13 | ssel 3177 |
. . . . . . . . 9
| |
| 14 | 12, 13 | sylbi 121 |
. . . . . . . 8
|
| 15 | 14 | imp 124 |
. . . . . . 7
|
| 16 | op1steq 6237 |
. . . . . . 7
| |
| 17 | 15, 16 | syl 14 |
. . . . . 6
|
| 18 | 17 | rexbidva 2494 |
. . . . 5
|
| 19 | 18 | adantr 276 |
. . . 4
|
| 20 | rexcom4 2786 |
. . . . 5
| |
| 21 | risset 2525 |
. . . . . 6
| |
| 22 | 21 | exbii 1619 |
. . . . 5
|
| 23 | 20, 22 | bitr4i 187 |
. . . 4
|
| 24 | 19, 23 | bitrdi 196 |
. . 3
|
| 25 | 11, 24 | bitr4d 191 |
. 2
|
| 26 | 2, 9, 25 | pm5.21nd 917 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-1st 6198 df-2nd 6199 |
| This theorem is referenced by: reldm 6244 |
| Copyright terms: Public domain | W3C validator |