ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releldm2 Unicode version

Theorem releldm2 6164
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
releldm2  |-  ( Rel 
A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem releldm2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2741 . . 3  |-  ( B  e.  dom  A  ->  B  e.  _V )
21anim2i 340 . 2  |-  ( ( Rel  A  /\  B  e.  dom  A )  -> 
( Rel  A  /\  B  e.  _V )
)
3 id 19 . . . . 5  |-  ( ( 1st `  x )  =  B  ->  ( 1st `  x )  =  B )
4 vex 2733 . . . . . 6  |-  x  e. 
_V
5 1stexg 6146 . . . . . 6  |-  ( x  e.  _V  ->  ( 1st `  x )  e. 
_V )
64, 5ax-mp 5 . . . . 5  |-  ( 1st `  x )  e.  _V
73, 6eqeltrrdi 2262 . . . 4  |-  ( ( 1st `  x )  =  B  ->  B  e.  _V )
87rexlimivw 2583 . . 3  |-  ( E. x  e.  A  ( 1st `  x )  =  B  ->  B  e.  _V )
98anim2i 340 . 2  |-  ( ( Rel  A  /\  E. x  e.  A  ( 1st `  x )  =  B )  ->  ( Rel  A  /\  B  e. 
_V ) )
10 eldm2g 4807 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  dom  A  <->  E. y <. B ,  y >.  e.  A ) )
1110adantl 275 . . 3  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( B  e.  dom  A  <->  E. y <. B ,  y >.  e.  A ) )
12 df-rel 4618 . . . . . . . . 9  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
13 ssel 3141 . . . . . . . . 9  |-  ( A 
C_  ( _V  X.  _V )  ->  ( x  e.  A  ->  x  e.  ( _V  X.  _V ) ) )
1412, 13sylbi 120 . . . . . . . 8  |-  ( Rel 
A  ->  ( x  e.  A  ->  x  e.  ( _V  X.  _V ) ) )
1514imp 123 . . . . . . 7  |-  ( ( Rel  A  /\  x  e.  A )  ->  x  e.  ( _V  X.  _V ) )
16 op1steq 6158 . . . . . . 7  |-  ( x  e.  ( _V  X.  _V )  ->  ( ( 1st `  x )  =  B  <->  E. y  x  =  <. B , 
y >. ) )
1715, 16syl 14 . . . . . 6  |-  ( ( Rel  A  /\  x  e.  A )  ->  (
( 1st `  x
)  =  B  <->  E. y  x  =  <. B , 
y >. ) )
1817rexbidva 2467 . . . . 5  |-  ( Rel 
A  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. x  e.  A  E. y  x  =  <. B ,  y >.
) )
1918adantr 274 . . . 4  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. x  e.  A  E. y  x  =  <. B , 
y >. ) )
20 rexcom4 2753 . . . . 5  |-  ( E. x  e.  A  E. y  x  =  <. B ,  y >.  <->  E. y E. x  e.  A  x  =  <. B , 
y >. )
21 risset 2498 . . . . . 6  |-  ( <. B ,  y >.  e.  A  <->  E. x  e.  A  x  =  <. B , 
y >. )
2221exbii 1598 . . . . 5  |-  ( E. y <. B ,  y
>.  e.  A  <->  E. y E. x  e.  A  x  =  <. B , 
y >. )
2320, 22bitr4i 186 . . . 4  |-  ( E. x  e.  A  E. y  x  =  <. B ,  y >.  <->  E. y <. B ,  y >.  e.  A )
2419, 23bitrdi 195 . . 3  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. y <. B ,  y >.  e.  A ) )
2511, 24bitr4d 190 . 2  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
262, 9, 25pm5.21nd 911 1  |-  ( Rel 
A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   _Vcvv 2730    C_ wss 3121   <.cop 3586    X. cxp 4609   dom cdm 4611   Rel wrel 4616   ` cfv 5198   1stc1st 6117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206  df-1st 6119  df-2nd 6120
This theorem is referenced by:  reldm  6165
  Copyright terms: Public domain W3C validator