ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelec Unicode version

Theorem relelec 6720
Description: Membership in an equivalence class when  R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
relelec  |-  ( Rel 
R  ->  ( A  e.  [ B ] R  <->  B R A ) )

Proof of Theorem relelec
StepHypRef Expression
1 elex 2811 . . . 4  |-  ( A  e.  [ B ] R  ->  A  e.  _V )
2 ecexr 6683 . . . 4  |-  ( A  e.  [ B ] R  ->  B  e.  _V )
31, 2jca 306 . . 3  |-  ( A  e.  [ B ] R  ->  ( A  e. 
_V  /\  B  e.  _V ) )
43adantl 277 . 2  |-  ( ( Rel  R  /\  A  e.  [ B ] R
)  ->  ( A  e.  _V  /\  B  e. 
_V ) )
5 brrelex12 4756 . . 3  |-  ( ( Rel  R  /\  B R A )  ->  ( B  e.  _V  /\  A  e.  _V ) )
65ancomd 267 . 2  |-  ( ( Rel  R  /\  B R A )  ->  ( A  e.  _V  /\  B  e.  _V ) )
7 elecg 6718 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  e.  [ B ] R  <->  B R A ) )
84, 6, 7pm5.21nd 921 1  |-  ( Rel 
R  ->  ( A  e.  [ B ] R  <->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   _Vcvv 2799   class class class wbr 4082   Rel wrel 4723   [cec 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-ec 6680
This theorem is referenced by:  eqgid  13758  eqg0el  13761
  Copyright terms: Public domain W3C validator