ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relelec Unicode version

Theorem relelec 6634
Description: Membership in an equivalence class when  R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
relelec  |-  ( Rel 
R  ->  ( A  e.  [ B ] R  <->  B R A ) )

Proof of Theorem relelec
StepHypRef Expression
1 elex 2774 . . . 4  |-  ( A  e.  [ B ] R  ->  A  e.  _V )
2 ecexr 6597 . . . 4  |-  ( A  e.  [ B ] R  ->  B  e.  _V )
31, 2jca 306 . . 3  |-  ( A  e.  [ B ] R  ->  ( A  e. 
_V  /\  B  e.  _V ) )
43adantl 277 . 2  |-  ( ( Rel  R  /\  A  e.  [ B ] R
)  ->  ( A  e.  _V  /\  B  e. 
_V ) )
5 brrelex12 4701 . . 3  |-  ( ( Rel  R  /\  B R A )  ->  ( B  e.  _V  /\  A  e.  _V ) )
65ancomd 267 . 2  |-  ( ( Rel  R  /\  B R A )  ->  ( A  e.  _V  /\  B  e.  _V ) )
7 elecg 6632 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  e.  [ B ] R  <->  B R A ) )
84, 6, 7pm5.21nd 917 1  |-  ( Rel 
R  ->  ( A  e.  [ B ] R  <->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   _Vcvv 2763   class class class wbr 4033   Rel wrel 4668   [cec 6590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-ec 6594
This theorem is referenced by:  eqgid  13356  eqg0el  13359
  Copyright terms: Public domain W3C validator