ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ideqg Unicode version

Theorem ideqg 4755
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )

Proof of Theorem ideqg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4733 . . . . 5  |-  Rel  _I
21brrelex1i 4647 . . . 4  |-  ( A  _I  B  ->  A  e.  _V )
32adantl 275 . . 3  |-  ( ( B  e.  V  /\  A  _I  B )  ->  A  e.  _V )
4 simpl 108 . . 3  |-  ( ( B  e.  V  /\  A  _I  B )  ->  B  e.  V )
53, 4jca 304 . 2  |-  ( ( B  e.  V  /\  A  _I  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
6 eleq1 2229 . . . . 5  |-  ( A  =  B  ->  ( A  e.  V  <->  B  e.  V ) )
76biimparc 297 . . . 4  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  V )
8 elex 2737 . . . 4  |-  ( A  e.  V  ->  A  e.  _V )
97, 8syl 14 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  _V )
10 simpl 108 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  B  e.  V )
119, 10jca 304 . 2  |-  ( ( B  e.  V  /\  A  =  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
12 eqeq1 2172 . . 3  |-  ( x  =  A  ->  (
x  =  y  <->  A  =  y ) )
13 eqeq2 2175 . . 3  |-  ( y  =  B  ->  ( A  =  y  <->  A  =  B ) )
14 df-id 4271 . . 3  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
1512, 13, 14brabg 4247 . 2  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  _I  B  <->  A  =  B ) )
165, 11, 15pm5.21nd 906 1  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   class class class wbr 3982    _I cid 4266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611
This theorem is referenced by:  ideq  4756  ididg  4757  poleloe  5003
  Copyright terms: Public domain W3C validator