ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ideqg Unicode version

Theorem ideqg 4762
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )

Proof of Theorem ideqg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4740 . . . . 5  |-  Rel  _I
21brrelex1i 4654 . . . 4  |-  ( A  _I  B  ->  A  e.  _V )
32adantl 275 . . 3  |-  ( ( B  e.  V  /\  A  _I  B )  ->  A  e.  _V )
4 simpl 108 . . 3  |-  ( ( B  e.  V  /\  A  _I  B )  ->  B  e.  V )
53, 4jca 304 . 2  |-  ( ( B  e.  V  /\  A  _I  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
6 eleq1 2233 . . . . 5  |-  ( A  =  B  ->  ( A  e.  V  <->  B  e.  V ) )
76biimparc 297 . . . 4  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  V )
8 elex 2741 . . . 4  |-  ( A  e.  V  ->  A  e.  _V )
97, 8syl 14 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  _V )
10 simpl 108 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  B  e.  V )
119, 10jca 304 . 2  |-  ( ( B  e.  V  /\  A  =  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
12 eqeq1 2177 . . 3  |-  ( x  =  A  ->  (
x  =  y  <->  A  =  y ) )
13 eqeq2 2180 . . 3  |-  ( y  =  B  ->  ( A  =  y  <->  A  =  B ) )
14 df-id 4278 . . 3  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
1512, 13, 14brabg 4254 . 2  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  _I  B  <->  A  =  B ) )
165, 11, 15pm5.21nd 911 1  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   class class class wbr 3989    _I cid 4273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618
This theorem is referenced by:  ideq  4763  ididg  4764  poleloe  5010
  Copyright terms: Public domain W3C validator