ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ideqg Unicode version

Theorem ideqg 4698
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )

Proof of Theorem ideqg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4676 . . . . 5  |-  Rel  _I
21brrelex1i 4590 . . . 4  |-  ( A  _I  B  ->  A  e.  _V )
32adantl 275 . . 3  |-  ( ( B  e.  V  /\  A  _I  B )  ->  A  e.  _V )
4 simpl 108 . . 3  |-  ( ( B  e.  V  /\  A  _I  B )  ->  B  e.  V )
53, 4jca 304 . 2  |-  ( ( B  e.  V  /\  A  _I  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
6 eleq1 2203 . . . . 5  |-  ( A  =  B  ->  ( A  e.  V  <->  B  e.  V ) )
76biimparc 297 . . . 4  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  V )
8 elex 2700 . . . 4  |-  ( A  e.  V  ->  A  e.  _V )
97, 8syl 14 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  _V )
10 simpl 108 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  B  e.  V )
119, 10jca 304 . 2  |-  ( ( B  e.  V  /\  A  =  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
12 eqeq1 2147 . . 3  |-  ( x  =  A  ->  (
x  =  y  <->  A  =  y ) )
13 eqeq2 2150 . . 3  |-  ( y  =  B  ->  ( A  =  y  <->  A  =  B ) )
14 df-id 4223 . . 3  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
1512, 13, 14brabg 4199 . 2  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  _I  B  <->  A  =  B ) )
165, 11, 15pm5.21nd 902 1  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   _Vcvv 2689   class class class wbr 3937    _I cid 4218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554
This theorem is referenced by:  ideq  4699  ididg  4700  poleloe  4946
  Copyright terms: Public domain W3C validator