ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ideqg Unicode version

Theorem ideqg 4779
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )

Proof of Theorem ideqg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4757 . . . . 5  |-  Rel  _I
21brrelex1i 4670 . . . 4  |-  ( A  _I  B  ->  A  e.  _V )
32adantl 277 . . 3  |-  ( ( B  e.  V  /\  A  _I  B )  ->  A  e.  _V )
4 simpl 109 . . 3  |-  ( ( B  e.  V  /\  A  _I  B )  ->  B  e.  V )
53, 4jca 306 . 2  |-  ( ( B  e.  V  /\  A  _I  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
6 eleq1 2240 . . . . 5  |-  ( A  =  B  ->  ( A  e.  V  <->  B  e.  V ) )
76biimparc 299 . . . 4  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  V )
8 elex 2749 . . . 4  |-  ( A  e.  V  ->  A  e.  _V )
97, 8syl 14 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  _V )
10 simpl 109 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  B  e.  V )
119, 10jca 306 . 2  |-  ( ( B  e.  V  /\  A  =  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
12 eqeq1 2184 . . 3  |-  ( x  =  A  ->  (
x  =  y  <->  A  =  y ) )
13 eqeq2 2187 . . 3  |-  ( y  =  B  ->  ( A  =  y  <->  A  =  B ) )
14 df-id 4294 . . 3  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
1512, 13, 14brabg 4270 . 2  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  _I  B  <->  A  =  B ) )
165, 11, 15pm5.21nd 916 1  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2738   class class class wbr 4004    _I cid 4289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634
This theorem is referenced by:  ideq  4780  ididg  4781  poleloe  5029
  Copyright terms: Public domain W3C validator