Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ideqg | Unicode version |
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
ideqg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 4749 | . . . . 5 | |
2 | 1 | brrelex1i 4663 | . . . 4 |
3 | 2 | adantl 277 | . . 3 |
4 | simpl 109 | . . 3 | |
5 | 3, 4 | jca 306 | . 2 |
6 | eleq1 2238 | . . . . 5 | |
7 | 6 | biimparc 299 | . . . 4 |
8 | elex 2746 | . . . 4 | |
9 | 7, 8 | syl 14 | . . 3 |
10 | simpl 109 | . . 3 | |
11 | 9, 10 | jca 306 | . 2 |
12 | eqeq1 2182 | . . 3 | |
13 | eqeq2 2185 | . . 3 | |
14 | df-id 4287 | . . 3 | |
15 | 12, 13, 14 | brabg 4263 | . 2 |
16 | 5, 11, 15 | pm5.21nd 916 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 cvv 2735 class class class wbr 3998 cid 4282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 |
This theorem is referenced by: ideq 4772 ididg 4773 poleloe 5020 |
Copyright terms: Public domain | W3C validator |