ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ideqg Unicode version

Theorem ideqg 4830
Description: For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
ideqg  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )

Proof of Theorem ideqg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4808 . . . . 5  |-  Rel  _I
21brrelex1i 4719 . . . 4  |-  ( A  _I  B  ->  A  e.  _V )
32adantl 277 . . 3  |-  ( ( B  e.  V  /\  A  _I  B )  ->  A  e.  _V )
4 simpl 109 . . 3  |-  ( ( B  e.  V  /\  A  _I  B )  ->  B  e.  V )
53, 4jca 306 . 2  |-  ( ( B  e.  V  /\  A  _I  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
6 eleq1 2268 . . . . 5  |-  ( A  =  B  ->  ( A  e.  V  <->  B  e.  V ) )
76biimparc 299 . . . 4  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  V )
8 elex 2783 . . . 4  |-  ( A  e.  V  ->  A  e.  _V )
97, 8syl 14 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  A  e.  _V )
10 simpl 109 . . 3  |-  ( ( B  e.  V  /\  A  =  B )  ->  B  e.  V )
119, 10jca 306 . 2  |-  ( ( B  e.  V  /\  A  =  B )  ->  ( A  e.  _V  /\  B  e.  V ) )
12 eqeq1 2212 . . 3  |-  ( x  =  A  ->  (
x  =  y  <->  A  =  y ) )
13 eqeq2 2215 . . 3  |-  ( y  =  B  ->  ( A  =  y  <->  A  =  B ) )
14 df-id 4341 . . 3  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
1512, 13, 14brabg 4316 . 2  |-  ( ( A  e.  _V  /\  B  e.  V )  ->  ( A  _I  B  <->  A  =  B ) )
165, 11, 15pm5.21nd 918 1  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   class class class wbr 4045    _I cid 4336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683
This theorem is referenced by:  ideq  4831  ididg  4832  poleloe  5083
  Copyright terms: Public domain W3C validator