ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzp12 Unicode version

Theorem elfzp12 10174
Description: Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.)
Assertion
Ref Expression
elfzp12  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) ) )

Proof of Theorem elfzp12
StepHypRef Expression
1 elfzelz 10100 . . 3  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
21anim2i 342 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ( M ... N
) )  ->  ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ ) )
3 eluzel2 9606 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
4 eleq1 2259 . . . . 5  |-  ( K  =  M  ->  ( K  e.  ZZ  <->  M  e.  ZZ ) )
53, 4syl5ibrcom 157 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  =  M  ->  K  e.  ZZ ) )
65imdistani 445 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  =  M )  ->  ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ ) )
7 elfzelz 10100 . . . 4  |-  ( K  e.  ( ( M  +  1 ) ... N )  ->  K  e.  ZZ )
87anim2i 342 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ ) )
96, 8jaodan 798 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( K  =  M  \/  K  e.  ( ( M  +  1 ) ... N ) ) )  ->  ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ ) )
10 fzpred 10145 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( { M }  u.  ( ( M  + 
1 ) ... N
) ) )
1110eleq2d 2266 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  K  e.  ( { M }  u.  (
( M  +  1 ) ... N ) ) ) )
12 elun 3304 . . . 4  |-  ( K  e.  ( { M }  u.  ( ( M  +  1 ) ... N ) )  <-> 
( K  e.  { M }  \/  K  e.  ( ( M  + 
1 ) ... N
) ) )
1311, 12bitrdi 196 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e. 
{ M }  \/  K  e.  ( ( M  +  1 ) ... N ) ) ) )
14 elsng 3637 . . . 4  |-  ( K  e.  ZZ  ->  ( K  e.  { M } 
<->  K  =  M ) )
1514orbi1d 792 . . 3  |-  ( K  e.  ZZ  ->  (
( K  e.  { M }  \/  K  e.  ( ( M  + 
1 ) ... N
) )  <->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) ) )
1613, 15sylan9bb 462 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) ) )
172, 9, 16pm5.21nd 917 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167    u. cun 3155   {csn 3622   ` cfv 5258  (class class class)co 5922   1c1 7880    + caddc 7882   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  seqf1oglem2  10612  bcpasc  10858  prmdiv  12403  dvply1  15001  lgseisenlem1  15311  lgsquadlem2  15319
  Copyright terms: Public domain W3C validator