ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzp12 Unicode version

Theorem elfzp12 9879
Description: Options for membership in a finite interval of integers. (Contributed by Jeff Madsen, 18-Jun-2010.)
Assertion
Ref Expression
elfzp12  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) ) )

Proof of Theorem elfzp12
StepHypRef Expression
1 elfzelz 9806 . . 3  |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
21anim2i 339 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ( M ... N
) )  ->  ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ ) )
3 eluzel2 9331 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
4 eleq1 2202 . . . . 5  |-  ( K  =  M  ->  ( K  e.  ZZ  <->  M  e.  ZZ ) )
53, 4syl5ibrcom 156 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  =  M  ->  K  e.  ZZ ) )
65imdistani 441 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  =  M )  ->  ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ ) )
7 elfzelz 9806 . . . 4  |-  ( K  e.  ( ( M  +  1 ) ... N )  ->  K  e.  ZZ )
87anim2i 339 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ( ( M  + 
1 ) ... N
) )  ->  ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ ) )
96, 8jaodan 786 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  ( K  =  M  \/  K  e.  ( ( M  +  1 ) ... N ) ) )  ->  ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ ) )
10 fzpred 9850 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( { M }  u.  ( ( M  + 
1 ) ... N
) ) )
1110eleq2d 2209 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  K  e.  ( { M }  u.  (
( M  +  1 ) ... N ) ) ) )
12 elun 3217 . . . 4  |-  ( K  e.  ( { M }  u.  ( ( M  +  1 ) ... N ) )  <-> 
( K  e.  { M }  \/  K  e.  ( ( M  + 
1 ) ... N
) ) )
1311, 12syl6bb 195 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  e. 
{ M }  \/  K  e.  ( ( M  +  1 ) ... N ) ) ) )
14 elsng 3542 . . . 4  |-  ( K  e.  ZZ  ->  ( K  e.  { M } 
<->  K  =  M ) )
1514orbi1d 780 . . 3  |-  ( K  e.  ZZ  ->  (
( K  e.  { M }  \/  K  e.  ( ( M  + 
1 ) ... N
) )  <->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) ) )
1613, 15sylan9bb 457 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) ) )
172, 9, 16pm5.21nd 901 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( K  e.  ( M ... N
)  <->  ( K  =  M  \/  K  e.  ( ( M  + 
1 ) ... N
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480    u. cun 3069   {csn 3527   ` cfv 5123  (class class class)co 5774   1c1 7621    + caddc 7623   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791
This theorem is referenced by:  bcpasc  10512
  Copyright terms: Public domain W3C validator