| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqgval | Unicode version | ||
| Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| eqgval.x |
|
| eqgval.n |
|
| eqgval.p |
|
| eqgval.r |
|
| Ref | Expression |
|---|---|
| eqgval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgval.x |
. . . 4
| |
| 2 | eqgval.n |
. . . 4
| |
| 3 | eqgval.p |
. . . 4
| |
| 4 | eqgval.r |
. . . 4
| |
| 5 | 1, 2, 3, 4 | eqgfval 13558 |
. . 3
|
| 6 | 5 | breqd 4055 |
. 2
|
| 7 | brabv 4805 |
. . . 4
| |
| 8 | 7 | adantl 277 |
. . 3
|
| 9 | simpr1 1006 |
. . . . 5
| |
| 10 | 9 | elexd 2785 |
. . . 4
|
| 11 | simpr2 1007 |
. . . . 5
| |
| 12 | 11 | elexd 2785 |
. . . 4
|
| 13 | 10, 12 | jca 306 |
. . 3
|
| 14 | vex 2775 |
. . . . . . . 8
| |
| 15 | vex 2775 |
. . . . . . . 8
| |
| 16 | 14, 15 | prss 3789 |
. . . . . . 7
|
| 17 | eleq1 2268 |
. . . . . . . 8
| |
| 18 | eleq1 2268 |
. . . . . . . 8
| |
| 19 | 17, 18 | bi2anan9 606 |
. . . . . . 7
|
| 20 | 16, 19 | bitr3id 194 |
. . . . . 6
|
| 21 | fveq2 5576 |
. . . . . . . 8
| |
| 22 | id 19 |
. . . . . . . 8
| |
| 23 | 21, 22 | oveqan12d 5963 |
. . . . . . 7
|
| 24 | 23 | eleq1d 2274 |
. . . . . 6
|
| 25 | 20, 24 | anbi12d 473 |
. . . . 5
|
| 26 | df-3an 983 |
. . . . 5
| |
| 27 | 25, 26 | bitr4di 198 |
. . . 4
|
| 28 | eqid 2205 |
. . . 4
| |
| 29 | 27, 28 | brabga 4310 |
. . 3
|
| 30 | 8, 13, 29 | pm5.21nd 918 |
. 2
|
| 31 | 6, 30 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-inn 9037 df-ndx 12835 df-slot 12836 df-base 12838 df-eqg 13508 |
| This theorem is referenced by: eqger 13560 eqglact 13561 eqgid 13562 eqgcpbl 13564 eqgabl 13666 |
| Copyright terms: Public domain | W3C validator |