ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgval Unicode version

Theorem eqgval 13429
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgval.x  |-  X  =  ( Base `  G
)
eqgval.n  |-  N  =  ( invg `  G )
eqgval.p  |-  .+  =  ( +g  `  G )
eqgval.r  |-  R  =  ( G ~QG  S )
Assertion
Ref Expression
eqgval  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A R B  <-> 
( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B
)  e.  S ) ) )

Proof of Theorem eqgval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqgval.x . . . 4  |-  X  =  ( Base `  G
)
2 eqgval.n . . . 4  |-  N  =  ( invg `  G )
3 eqgval.p . . . 4  |-  .+  =  ( +g  `  G )
4 eqgval.r . . . 4  |-  R  =  ( G ~QG  S )
51, 2, 3, 4eqgfval 13428 . . 3  |-  ( ( G  e.  V  /\  S  C_  X )  ->  R  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } )
65breqd 4045 . 2  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A R B  <-> 
A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B ) )
7 brabv 4794 . . . 4  |-  ( A { <. x ,  y
>.  |  ( {
x ,  y } 
C_  X  /\  (
( N `  x
)  .+  y )  e.  S ) } B  ->  ( A  e.  _V  /\  B  e.  _V )
)
87adantl 277 . . 3  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B )  -> 
( A  e.  _V  /\  B  e.  _V )
)
9 simpr1 1005 . . . . 5  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  A  e.  X )
109elexd 2776 . . . 4  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  A  e.  _V )
11 simpr2 1006 . . . . 5  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  B  e.  X )
1211elexd 2776 . . . 4  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  ->  B  e.  _V )
1310, 12jca 306 . . 3  |-  ( ( ( G  e.  V  /\  S  C_  X )  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) )  -> 
( A  e.  _V  /\  B  e.  _V )
)
14 vex 2766 . . . . . . . 8  |-  x  e. 
_V
15 vex 2766 . . . . . . . 8  |-  y  e. 
_V
1614, 15prss 3779 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  <->  { x ,  y } 
C_  X )
17 eleq1 2259 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  X  <->  A  e.  X ) )
18 eleq1 2259 . . . . . . . 8  |-  ( y  =  B  ->  (
y  e.  X  <->  B  e.  X ) )
1917, 18bi2anan9 606 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x  e.  X  /\  y  e.  X )  <->  ( A  e.  X  /\  B  e.  X ) ) )
2016, 19bitr3id 194 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( { x ,  y }  C_  X  <->  ( A  e.  X  /\  B  e.  X )
) )
21 fveq2 5561 . . . . . . . 8  |-  ( x  =  A  ->  ( N `  x )  =  ( N `  A ) )
22 id 19 . . . . . . . 8  |-  ( y  =  B  ->  y  =  B )
2321, 22oveqan12d 5944 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( N `  x )  .+  y
)  =  ( ( N `  A ) 
.+  B ) )
2423eleq1d 2265 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( ( N `
 x )  .+  y )  e.  S  <->  ( ( N `  A
)  .+  B )  e.  S ) )
2520, 24anbi12d 473 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
)  <->  ( ( A  e.  X  /\  B  e.  X )  /\  (
( N `  A
)  .+  B )  e.  S ) ) )
26 df-3an 982 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B
)  e.  S )  <-> 
( ( A  e.  X  /\  B  e.  X )  /\  (
( N `  A
)  .+  B )  e.  S ) )
2725, 26bitr4di 198 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( { x ,  y }  C_  X  /\  ( ( N `
 x )  .+  y )  e.  S
)  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) ) )
28 eqid 2196 . . . 4  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) }
2927, 28brabga 4299 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) ) )
308, 13, 29pm5.21nd 917 . 2  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A { <. x ,  y >.  |  ( { x ,  y }  C_  X  /\  ( ( N `  x )  .+  y
)  e.  S ) } B  <->  ( A  e.  X  /\  B  e.  X  /\  ( ( N `  A ) 
.+  B )  e.  S ) ) )
316, 30bitrd 188 1  |-  ( ( G  e.  V  /\  S  C_  X )  -> 
( A R B  <-> 
( A  e.  X  /\  B  e.  X  /\  ( ( N `  A )  .+  B
)  e.  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   {cpr 3624   class class class wbr 4034   {copab 4094   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   invgcminusg 13203   ~QG cqg 13375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-eqg 13378
This theorem is referenced by:  eqger  13430  eqglact  13431  eqgid  13432  eqgcpbl  13434  eqgabl  13536
  Copyright terms: Public domain W3C validator