ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev3 Unicode version

Theorem fzrev3 10283
Description: The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
Assertion
Ref Expression
fzrev3  |-  ( K  e.  ZZ  ->  ( K  e.  ( M ... N )  <->  ( ( M  +  N )  -  K )  e.  ( M ... N ) ) )

Proof of Theorem fzrev3
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( K  e.  ZZ  /\  K  e.  ( M ... N ) )  ->  K  e.  ZZ )
2 elfzel1 10220 . . . 4  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
32adantl 277 . . 3  |-  ( ( K  e.  ZZ  /\  K  e.  ( M ... N ) )  ->  M  e.  ZZ )
4 elfzel2 10219 . . . 4  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
54adantl 277 . . 3  |-  ( ( K  e.  ZZ  /\  K  e.  ( M ... N ) )  ->  N  e.  ZZ )
61, 3, 53jca 1201 . 2  |-  ( ( K  e.  ZZ  /\  K  e.  ( M ... N ) )  -> 
( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )
)
7 simpl 109 . . 3  |-  ( ( K  e.  ZZ  /\  ( ( M  +  N )  -  K
)  e.  ( M ... N ) )  ->  K  e.  ZZ )
8 elfzel1 10220 . . . 4  |-  ( ( ( M  +  N
)  -  K )  e.  ( M ... N )  ->  M  e.  ZZ )
98adantl 277 . . 3  |-  ( ( K  e.  ZZ  /\  ( ( M  +  N )  -  K
)  e.  ( M ... N ) )  ->  M  e.  ZZ )
10 elfzel2 10219 . . . 4  |-  ( ( ( M  +  N
)  -  K )  e.  ( M ... N )  ->  N  e.  ZZ )
1110adantl 277 . . 3  |-  ( ( K  e.  ZZ  /\  ( ( M  +  N )  -  K
)  e.  ( M ... N ) )  ->  N  e.  ZZ )
127, 9, 113jca 1201 . 2  |-  ( ( K  e.  ZZ  /\  ( ( M  +  N )  -  K
)  e.  ( M ... N ) )  ->  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
13 zcn 9451 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 zcn 9451 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
15 pncan 8352 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  N
)  =  M )
16 pncan2 8353 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  M
)  =  N )
1715, 16oveq12d 6019 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( ( M  +  N )  -  N ) ... (
( M  +  N
)  -  M ) )  =  ( M ... N ) )
1813, 14, 17syl2an 289 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( M  +  N )  -  N ) ... (
( M  +  N
)  -  M ) )  =  ( M ... N ) )
1918eleq2d 2299 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( ( ( M  +  N )  -  N
) ... ( ( M  +  N )  -  M ) )  <->  K  e.  ( M ... N ) ) )
20193adant1 1039 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( (
( M  +  N
)  -  N ) ... ( ( M  +  N )  -  M ) )  <->  K  e.  ( M ... N ) ) )
21 3simpc 1020 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
22 zaddcl 9486 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
23223adant1 1039 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N )  e.  ZZ )
24 simp1 1021 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
25 fzrev 10280 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( M  +  N )  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( ( M  +  N )  -  N
) ... ( ( M  +  N )  -  M ) )  <->  ( ( M  +  N )  -  K )  e.  ( M ... N ) ) )
2621, 23, 24, 25syl12anc 1269 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( (
( M  +  N
)  -  N ) ... ( ( M  +  N )  -  M ) )  <->  ( ( M  +  N )  -  K )  e.  ( M ... N ) ) )
2720, 26bitr3d 190 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( ( M  +  N )  -  K )  e.  ( M ... N ) ) )
286, 12, 27pm5.21nd 921 1  |-  ( K  e.  ZZ  ->  ( K  e.  ( M ... N )  <->  ( ( M  +  N )  -  K )  e.  ( M ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997    + caddc 8002    - cmin 8317   ZZcz 9446   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  fzrev3i  10284
  Copyright terms: Public domain W3C validator