ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzrev3 Unicode version

Theorem fzrev3 9555
Description: The "complement" of a member of a finite set of sequential integers. (Contributed by NM, 20-Nov-2005.)
Assertion
Ref Expression
fzrev3  |-  ( K  e.  ZZ  ->  ( K  e.  ( M ... N )  <->  ( ( M  +  N )  -  K )  e.  ( M ... N ) ) )

Proof of Theorem fzrev3
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( K  e.  ZZ  /\  K  e.  ( M ... N ) )  ->  K  e.  ZZ )
2 elfzel1 9493 . . . 4  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
32adantl 272 . . 3  |-  ( ( K  e.  ZZ  /\  K  e.  ( M ... N ) )  ->  M  e.  ZZ )
4 elfzel2 9492 . . . 4  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
54adantl 272 . . 3  |-  ( ( K  e.  ZZ  /\  K  e.  ( M ... N ) )  ->  N  e.  ZZ )
61, 3, 53jca 1124 . 2  |-  ( ( K  e.  ZZ  /\  K  e.  ( M ... N ) )  -> 
( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )
)
7 simpl 108 . . 3  |-  ( ( K  e.  ZZ  /\  ( ( M  +  N )  -  K
)  e.  ( M ... N ) )  ->  K  e.  ZZ )
8 elfzel1 9493 . . . 4  |-  ( ( ( M  +  N
)  -  K )  e.  ( M ... N )  ->  M  e.  ZZ )
98adantl 272 . . 3  |-  ( ( K  e.  ZZ  /\  ( ( M  +  N )  -  K
)  e.  ( M ... N ) )  ->  M  e.  ZZ )
10 elfzel2 9492 . . . 4  |-  ( ( ( M  +  N
)  -  K )  e.  ( M ... N )  ->  N  e.  ZZ )
1110adantl 272 . . 3  |-  ( ( K  e.  ZZ  /\  ( ( M  +  N )  -  K
)  e.  ( M ... N ) )  ->  N  e.  ZZ )
127, 9, 113jca 1124 . 2  |-  ( ( K  e.  ZZ  /\  ( ( M  +  N )  -  K
)  e.  ( M ... N ) )  ->  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
13 zcn 8809 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  CC )
14 zcn 8809 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
15 pncan 7742 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  N
)  =  M )
16 pncan2 7743 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( M  +  N )  -  M
)  =  N )
1715, 16oveq12d 5684 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( ( ( M  +  N )  -  N ) ... (
( M  +  N
)  -  M ) )  =  ( M ... N ) )
1813, 14, 17syl2an 284 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( M  +  N )  -  N ) ... (
( M  +  N
)  -  M ) )  =  ( M ... N ) )
1918eleq2d 2158 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( ( ( M  +  N )  -  N
) ... ( ( M  +  N )  -  M ) )  <->  K  e.  ( M ... N ) ) )
20193adant1 962 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( (
( M  +  N
)  -  N ) ... ( ( M  +  N )  -  M ) )  <->  K  e.  ( M ... N ) ) )
21 3simpc 943 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
22 zaddcl 8844 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
23223adant1 962 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N )  e.  ZZ )
24 simp1 944 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
25 fzrev 9552 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( M  +  N )  e.  ZZ  /\  K  e.  ZZ ) )  -> 
( K  e.  ( ( ( M  +  N )  -  N
) ... ( ( M  +  N )  -  M ) )  <->  ( ( M  +  N )  -  K )  e.  ( M ... N ) ) )
2621, 23, 24, 25syl12anc 1173 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( (
( M  +  N
)  -  N ) ... ( ( M  +  N )  -  M ) )  <->  ( ( M  +  N )  -  K )  e.  ( M ... N ) ) )
2720, 26bitr3d 189 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( ( M  +  N )  -  K )  e.  ( M ... N ) ) )
286, 12, 27pm5.21nd 864 1  |-  ( K  e.  ZZ  ->  ( K  e.  ( M ... N )  <->  ( ( M  +  N )  -  K )  e.  ( M ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 925    = wceq 1290    e. wcel 1439  (class class class)co 5666   CCcc 7402    + caddc 7407    - cmin 7707   ZZcz 8804   ...cfz 9478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7490  ax-resscn 7491  ax-1cn 7492  ax-1re 7493  ax-icn 7494  ax-addcl 7495  ax-addrcl 7496  ax-mulcl 7497  ax-addcom 7499  ax-addass 7501  ax-distr 7503  ax-i2m1 7504  ax-0lt1 7505  ax-0id 7507  ax-rnegex 7508  ax-cnre 7510  ax-pre-ltirr 7511  ax-pre-ltwlin 7512  ax-pre-lttrn 7513  ax-pre-ltadd 7515
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7578  df-mnf 7579  df-xr 7580  df-ltxr 7581  df-le 7582  df-sub 7709  df-neg 7710  df-inn 8477  df-n0 8728  df-z 8805  df-uz 9074  df-fz 9479
This theorem is referenced by:  fzrev3i  9556
  Copyright terms: Public domain W3C validator