ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnp2m Unicode version

Theorem cncnp2m 14208
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.)
Hypotheses
Ref Expression
cncnp.1  |-  X  = 
U. J
cncnp.2  |-  Y  = 
U. K
Assertion
Ref Expression
cncnp2m  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( F  e.  ( J  Cn  K
)  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    y, X    x, Y
Allowed substitution hints:    F( y)    J( y)    K( y)    Y( y)

Proof of Theorem cncnp2m
StepHypRef Expression
1 cntop1 14178 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2 cncnp.1 . . . . . 6  |-  X  = 
U. J
32toptopon 13995 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
41, 3sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
5 cntop2 14179 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
6 cncnp.2 . . . . . 6  |-  Y  = 
U. K
76toptopon 13995 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
85, 7sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  (TopOn `  Y )
)
92, 6cnf 14181 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )
104, 8, 9jca31 309 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
1110adantl 277 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  F  e.  ( J  Cn  K
) )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
123biimpi 120 . . . . 5  |-  ( J  e.  Top  ->  J  e.  (TopOn `  X )
)
13123ad2ant1 1020 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  J  e.  (TopOn `  X ) )
1413adantr 276 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  J  e.  (TopOn `  X ) )
157biimpi 120 . . . . 5  |-  ( K  e.  Top  ->  K  e.  (TopOn `  Y )
)
16153ad2ant2 1021 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  K  e.  (TopOn `  Y ) )
1716adantr 276 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  K  e.  (TopOn `  Y ) )
18 r19.2m 3524 . . . . . . 7  |-  ( ( E. y  y  e.  X  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )
1918ex 115 . . . . . 6  |-  ( E. y  y  e.  X  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K
) `  x )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
20193ad2ant3 1022 . . . . 5  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
21 cnpf2 14184 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  x )
)  ->  F : X
--> Y )
22213expia 1207 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2322rexlimdvw 2611 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2413, 16, 23syl2anc 411 . . . . 5  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2520, 24syld 45 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2625imp 124 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  F : X
--> Y )
2714, 17, 26jca31 309 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y ) )
28 cncnp 14207 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
2928baibd 924 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( F  e.  ( J  Cn  K )  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
3011, 27, 29pm5.21nd 917 1  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( F  e.  ( J  Cn  K
)  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2160   A.wral 2468   E.wrex 2469   U.cuni 3824   -->wf 5231   ` cfv 5235  (class class class)co 5897   Topctop 13974  TopOnctopon 13987    Cn ccn 14162    CnP ccnp 14163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-map 6677  df-topgen 12768  df-top 13975  df-topon 13988  df-cn 14165  df-cnp 14166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator