| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncnp2m | Unicode version | ||
| Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.) |
| Ref | Expression |
|---|---|
| cncnp.1 |
|
| cncnp.2 |
|
| Ref | Expression |
|---|---|
| cncnp2m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 14869 |
. . . . 5
| |
| 2 | cncnp.1 |
. . . . . 6
| |
| 3 | 2 | toptopon 14686 |
. . . . 5
|
| 4 | 1, 3 | sylib 122 |
. . . 4
|
| 5 | cntop2 14870 |
. . . . 5
| |
| 6 | cncnp.2 |
. . . . . 6
| |
| 7 | 6 | toptopon 14686 |
. . . . 5
|
| 8 | 5, 7 | sylib 122 |
. . . 4
|
| 9 | 2, 6 | cnf 14872 |
. . . 4
|
| 10 | 4, 8, 9 | jca31 309 |
. . 3
|
| 11 | 10 | adantl 277 |
. 2
|
| 12 | 3 | biimpi 120 |
. . . . 5
|
| 13 | 12 | 3ad2ant1 1042 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | 7 | biimpi 120 |
. . . . 5
|
| 16 | 15 | 3ad2ant2 1043 |
. . . 4
|
| 17 | 16 | adantr 276 |
. . 3
|
| 18 | r19.2m 3578 |
. . . . . . 7
| |
| 19 | 18 | ex 115 |
. . . . . 6
|
| 20 | 19 | 3ad2ant3 1044 |
. . . . 5
|
| 21 | cnpf2 14875 |
. . . . . . . 8
| |
| 22 | 21 | 3expia 1229 |
. . . . . . 7
|
| 23 | 22 | rexlimdvw 2652 |
. . . . . 6
|
| 24 | 13, 16, 23 | syl2anc 411 |
. . . . 5
|
| 25 | 20, 24 | syld 45 |
. . . 4
|
| 26 | 25 | imp 124 |
. . 3
|
| 27 | 14, 17, 26 | jca31 309 |
. 2
|
| 28 | cncnp 14898 |
. . 3
| |
| 29 | 28 | baibd 928 |
. 2
|
| 30 | 11, 27, 29 | pm5.21nd 921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-topgen 13288 df-top 14666 df-topon 14679 df-cn 14856 df-cnp 14857 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |