ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnp2m Unicode version

Theorem cncnp2m 12881
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.)
Hypotheses
Ref Expression
cncnp.1  |-  X  = 
U. J
cncnp.2  |-  Y  = 
U. K
Assertion
Ref Expression
cncnp2m  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( F  e.  ( J  Cn  K
)  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    y, X    x, Y
Allowed substitution hints:    F( y)    J( y)    K( y)    Y( y)

Proof of Theorem cncnp2m
StepHypRef Expression
1 cntop1 12851 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2 cncnp.1 . . . . . 6  |-  X  = 
U. J
32toptopon 12666 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
41, 3sylib 121 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
5 cntop2 12852 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
6 cncnp.2 . . . . . 6  |-  Y  = 
U. K
76toptopon 12666 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
85, 7sylib 121 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  (TopOn `  Y )
)
92, 6cnf 12854 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )
104, 8, 9jca31 307 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
1110adantl 275 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  F  e.  ( J  Cn  K
) )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
123biimpi 119 . . . . 5  |-  ( J  e.  Top  ->  J  e.  (TopOn `  X )
)
13123ad2ant1 1008 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  J  e.  (TopOn `  X ) )
1413adantr 274 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  J  e.  (TopOn `  X ) )
157biimpi 119 . . . . 5  |-  ( K  e.  Top  ->  K  e.  (TopOn `  Y )
)
16153ad2ant2 1009 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  K  e.  (TopOn `  Y ) )
1716adantr 274 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  K  e.  (TopOn `  Y ) )
18 r19.2m 3495 . . . . . . 7  |-  ( ( E. y  y  e.  X  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )
1918ex 114 . . . . . 6  |-  ( E. y  y  e.  X  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K
) `  x )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
20193ad2ant3 1010 . . . . 5  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
21 cnpf2 12857 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  x )
)  ->  F : X
--> Y )
22213expia 1195 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2322rexlimdvw 2587 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2413, 16, 23syl2anc 409 . . . . 5  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2520, 24syld 45 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2625imp 123 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  F : X
--> Y )
2714, 17, 26jca31 307 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y ) )
28 cncnp 12880 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
2928baibd 913 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( F  e.  ( J  Cn  K )  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
3011, 27, 29pm5.21nd 906 1  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( F  e.  ( J  Cn  K
)  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   U.cuni 3789   -->wf 5184   ` cfv 5188  (class class class)co 5842   Topctop 12645  TopOnctopon 12658    Cn ccn 12835    CnP ccnp 12836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-topgen 12577  df-top 12646  df-topon 12659  df-cn 12838  df-cnp 12839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator