| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncnp2m | Unicode version | ||
| Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.) |
| Ref | Expression |
|---|---|
| cncnp.1 |
|
| cncnp.2 |
|
| Ref | Expression |
|---|---|
| cncnp2m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 14788 |
. . . . 5
| |
| 2 | cncnp.1 |
. . . . . 6
| |
| 3 | 2 | toptopon 14605 |
. . . . 5
|
| 4 | 1, 3 | sylib 122 |
. . . 4
|
| 5 | cntop2 14789 |
. . . . 5
| |
| 6 | cncnp.2 |
. . . . . 6
| |
| 7 | 6 | toptopon 14605 |
. . . . 5
|
| 8 | 5, 7 | sylib 122 |
. . . 4
|
| 9 | 2, 6 | cnf 14791 |
. . . 4
|
| 10 | 4, 8, 9 | jca31 309 |
. . 3
|
| 11 | 10 | adantl 277 |
. 2
|
| 12 | 3 | biimpi 120 |
. . . . 5
|
| 13 | 12 | 3ad2ant1 1021 |
. . . 4
|
| 14 | 13 | adantr 276 |
. . 3
|
| 15 | 7 | biimpi 120 |
. . . . 5
|
| 16 | 15 | 3ad2ant2 1022 |
. . . 4
|
| 17 | 16 | adantr 276 |
. . 3
|
| 18 | r19.2m 3555 |
. . . . . . 7
| |
| 19 | 18 | ex 115 |
. . . . . 6
|
| 20 | 19 | 3ad2ant3 1023 |
. . . . 5
|
| 21 | cnpf2 14794 |
. . . . . . . 8
| |
| 22 | 21 | 3expia 1208 |
. . . . . . 7
|
| 23 | 22 | rexlimdvw 2629 |
. . . . . 6
|
| 24 | 13, 16, 23 | syl2anc 411 |
. . . . 5
|
| 25 | 20, 24 | syld 45 |
. . . 4
|
| 26 | 25 | imp 124 |
. . 3
|
| 27 | 14, 17, 26 | jca31 309 |
. 2
|
| 28 | cncnp 14817 |
. . 3
| |
| 29 | 28 | baibd 925 |
. 2
|
| 30 | 11, 27, 29 | pm5.21nd 918 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-topgen 13207 df-top 14585 df-topon 14598 df-cn 14775 df-cnp 14776 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |