Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cncnp2m | Unicode version |
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.) |
Ref | Expression |
---|---|
cncnp.1 | |
cncnp.2 |
Ref | Expression |
---|---|
cncnp2m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop1 12540 | . . . . 5 | |
2 | cncnp.1 | . . . . . 6 | |
3 | 2 | toptopon 12355 | . . . . 5 TopOn |
4 | 1, 3 | sylib 121 | . . . 4 TopOn |
5 | cntop2 12541 | . . . . 5 | |
6 | cncnp.2 | . . . . . 6 | |
7 | 6 | toptopon 12355 | . . . . 5 TopOn |
8 | 5, 7 | sylib 121 | . . . 4 TopOn |
9 | 2, 6 | cnf 12543 | . . . 4 |
10 | 4, 8, 9 | jca31 307 | . . 3 TopOn TopOn |
11 | 10 | adantl 275 | . 2 TopOn TopOn |
12 | 3 | biimpi 119 | . . . . 5 TopOn |
13 | 12 | 3ad2ant1 1003 | . . . 4 TopOn |
14 | 13 | adantr 274 | . . 3 TopOn |
15 | 7 | biimpi 119 | . . . . 5 TopOn |
16 | 15 | 3ad2ant2 1004 | . . . 4 TopOn |
17 | 16 | adantr 274 | . . 3 TopOn |
18 | r19.2m 3476 | . . . . . . 7 | |
19 | 18 | ex 114 | . . . . . 6 |
20 | 19 | 3ad2ant3 1005 | . . . . 5 |
21 | cnpf2 12546 | . . . . . . . 8 TopOn TopOn | |
22 | 21 | 3expia 1184 | . . . . . . 7 TopOn TopOn |
23 | 22 | rexlimdvw 2575 | . . . . . 6 TopOn TopOn |
24 | 13, 16, 23 | syl2anc 409 | . . . . 5 |
25 | 20, 24 | syld 45 | . . . 4 |
26 | 25 | imp 123 | . . 3 |
27 | 14, 17, 26 | jca31 307 | . 2 TopOn TopOn |
28 | cncnp 12569 | . . 3 TopOn TopOn | |
29 | 28 | baibd 909 | . 2 TopOn TopOn |
30 | 11, 27, 29 | pm5.21nd 902 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1332 wex 1469 wcel 2125 wral 2432 wrex 2433 cuni 3768 wf 5159 cfv 5163 (class class class)co 5814 ctop 12334 TopOnctopon 12347 ccn 12524 ccnp 12525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-map 6584 df-topgen 12311 df-top 12335 df-topon 12348 df-cn 12527 df-cnp 12528 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |