ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnp2m Unicode version

Theorem cncnp2m 14645
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Jim Kingdon, 30-Mar-2023.)
Hypotheses
Ref Expression
cncnp.1  |-  X  = 
U. J
cncnp.2  |-  Y  = 
U. K
Assertion
Ref Expression
cncnp2m  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( F  e.  ( J  Cn  K
)  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    y, X    x, Y
Allowed substitution hints:    F( y)    J( y)    K( y)    Y( y)

Proof of Theorem cncnp2m
StepHypRef Expression
1 cntop1 14615 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2 cncnp.1 . . . . . 6  |-  X  = 
U. J
32toptopon 14432 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
41, 3sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
5 cntop2 14616 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
6 cncnp.2 . . . . . 6  |-  Y  = 
U. K
76toptopon 14432 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
85, 7sylib 122 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  (TopOn `  Y )
)
92, 6cnf 14618 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )
104, 8, 9jca31 309 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
1110adantl 277 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  F  e.  ( J  Cn  K
) )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
123biimpi 120 . . . . 5  |-  ( J  e.  Top  ->  J  e.  (TopOn `  X )
)
13123ad2ant1 1020 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  J  e.  (TopOn `  X ) )
1413adantr 276 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  J  e.  (TopOn `  X ) )
157biimpi 120 . . . . 5  |-  ( K  e.  Top  ->  K  e.  (TopOn `  Y )
)
16153ad2ant2 1021 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  K  e.  (TopOn `  Y ) )
1716adantr 276 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  K  e.  (TopOn `  Y ) )
18 r19.2m 3546 . . . . . . 7  |-  ( ( E. y  y  e.  X  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )
1918ex 115 . . . . . 6  |-  ( E. y  y  e.  X  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K
) `  x )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
20193ad2ant3 1022 . . . . 5  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
21 cnpf2 14621 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  x )
)  ->  F : X
--> Y )
22213expia 1207 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2322rexlimdvw 2626 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2413, 16, 23syl2anc 411 . . . . 5  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2520, 24syld 45 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y ) )
2625imp 124 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  F : X
--> Y )
2714, 17, 26jca31 309 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y ) )
28 cncnp 14644 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
2928baibd 924 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( F  e.  ( J  Cn  K )  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
3011, 27, 29pm5.21nd 917 1  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  E. y  y  e.  X
)  ->  ( F  e.  ( J  Cn  K
)  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372   E.wex 1514    e. wcel 2175   A.wral 2483   E.wrex 2484   U.cuni 3849   -->wf 5266   ` cfv 5270  (class class class)co 5943   Topctop 14411  TopOnctopon 14424    Cn ccn 14599    CnP ccnp 14600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-map 6736  df-topgen 13034  df-top 14412  df-topon 14425  df-cn 14602  df-cnp 14603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator