Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.21ndd | Unicode version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | |
pm5.21ndd.2 | |
pm5.21ndd.3 |
Ref | Expression |
---|---|
pm5.21ndd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.1 | . . . 4 | |
2 | pm5.21ndd.3 | . . . 4 | |
3 | 1, 2 | syld 45 | . . 3 |
4 | 3 | ibd 177 | . 2 |
5 | pm5.21ndd.2 | . . . . 5 | |
6 | 5, 2 | syld 45 | . . . 4 |
7 | bicom1 130 | . . . 4 | |
8 | 6, 7 | syl6 33 | . . 3 |
9 | 8 | ibd 177 | . 2 |
10 | 4, 9 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.21nd 911 sbcrext 3032 rmob 3047 epelg 4273 eqbrrdva 4779 relbrcnvg 4988 fmptco 5660 ovelrn 5999 brtpos2 6228 elpmg 6640 brdomg 6724 elfi2 6947 genpelvl 7467 genpelvu 7468 fzoval 10097 clim 11237 pceu 12242 mndpropd 12669 cnrest2 12995 cnptoprest2 12999 lmss 13005 reopnap 13297 limcdifap 13390 |
Copyright terms: Public domain | W3C validator |