| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm5.21ndd | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| pm5.21ndd.1 | 
 | 
| pm5.21ndd.2 | 
 | 
| pm5.21ndd.3 | 
 | 
| Ref | Expression | 
|---|---|
| pm5.21ndd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.21ndd.1 | 
. . . 4
 | |
| 2 | pm5.21ndd.3 | 
. . . 4
 | |
| 3 | 1, 2 | syld 45 | 
. . 3
 | 
| 4 | 3 | ibd 178 | 
. 2
 | 
| 5 | pm5.21ndd.2 | 
. . . . 5
 | |
| 6 | 5, 2 | syld 45 | 
. . . 4
 | 
| 7 | bicom1 131 | 
. . . 4
 | |
| 8 | 6, 7 | syl6 33 | 
. . 3
 | 
| 9 | 8 | ibd 178 | 
. 2
 | 
| 10 | 4, 9 | impbid 129 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm5.21nd 917 sbcrext 3067 rmob 3082 epelg 4325 eqbrrdva 4836 elrelimasn 5035 relbrcnvg 5048 fmptco 5728 ovelrn 6072 brtpos2 6309 elpmg 6723 brdomg 6807 elfi2 7038 genpelvl 7579 genpelvu 7580 fzoval 10223 nninfinf 10535 clim 11446 dvdsaddre2b 12006 pceu 12464 divsfval 12971 sgrppropd 13056 mndpropd 13081 issubg3 13322 resghm2b 13392 rngpropd 13511 dvdsrd 13650 opprsubrngg 13767 subrngpropd 13772 subrgpropd 13809 rhmpropd 13810 lmodprop2d 13904 cnrest2 14472 cnptoprest2 14476 lmss 14482 reopnap 14782 limcdifap 14898 | 
| Copyright terms: Public domain | W3C validator |