| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21ndd | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 |
|
| pm5.21ndd.2 |
|
| pm5.21ndd.3 |
|
| Ref | Expression |
|---|---|
| pm5.21ndd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.1 |
. . . 4
| |
| 2 | pm5.21ndd.3 |
. . . 4
| |
| 3 | 1, 2 | syld 45 |
. . 3
|
| 4 | 3 | ibd 178 |
. 2
|
| 5 | pm5.21ndd.2 |
. . . . 5
| |
| 6 | 5, 2 | syld 45 |
. . . 4
|
| 7 | bicom1 131 |
. . . 4
| |
| 8 | 6, 7 | syl6 33 |
. . 3
|
| 9 | 8 | ibd 178 |
. 2
|
| 10 | 4, 9 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nd 917 sbcrext 3075 rmob 3090 epelg 4336 eqbrrdva 4847 elrelimasn 5047 relbrcnvg 5060 fmptco 5745 ovelrn 6094 brtpos2 6336 elpmg 6750 brdomg 6836 elfi2 7073 genpelvl 7624 genpelvu 7625 fzoval 10269 nninfinf 10586 clim 11534 dvdsaddre2b 12094 pceu 12560 divsfval 13102 sgrppropd 13187 mndpropd 13214 issubg3 13470 resghm2b 13540 rngpropd 13659 dvdsrd 13798 opprsubrngg 13915 subrngpropd 13920 subrgpropd 13957 rhmpropd 13958 lmodprop2d 14052 cnrest2 14650 cnptoprest2 14654 lmss 14660 reopnap 14960 limcdifap 15076 |
| Copyright terms: Public domain | W3C validator |