| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21ndd | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 |
|
| pm5.21ndd.2 |
|
| pm5.21ndd.3 |
|
| Ref | Expression |
|---|---|
| pm5.21ndd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.1 |
. . . 4
| |
| 2 | pm5.21ndd.3 |
. . . 4
| |
| 3 | 1, 2 | syld 45 |
. . 3
|
| 4 | 3 | ibd 178 |
. 2
|
| 5 | pm5.21ndd.2 |
. . . . 5
| |
| 6 | 5, 2 | syld 45 |
. . . 4
|
| 7 | bicom1 131 |
. . . 4
| |
| 8 | 6, 7 | syl6 33 |
. . 3
|
| 9 | 8 | ibd 178 |
. 2
|
| 10 | 4, 9 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nd 918 sbcrext 3080 rmob 3095 epelg 4345 eqbrrdva 4856 elrelimasn 5057 relbrcnvg 5070 fmptco 5759 ovelrn 6108 brtpos2 6350 elpmg 6764 brdomg 6850 elfi2 7089 genpelvl 7645 genpelvu 7646 fzoval 10290 nninfinf 10610 clim 11667 dvdsaddre2b 12227 pceu 12693 divsfval 13235 sgrppropd 13320 mndpropd 13347 issubg3 13603 resghm2b 13673 rngpropd 13792 dvdsrd 13931 opprsubrngg 14048 subrngpropd 14053 subrgpropd 14090 rhmpropd 14091 lmodprop2d 14185 cnrest2 14783 cnptoprest2 14787 lmss 14793 reopnap 15093 limcdifap 15209 |
| Copyright terms: Public domain | W3C validator |