Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.21ndd | Unicode version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | |
pm5.21ndd.2 | |
pm5.21ndd.3 |
Ref | Expression |
---|---|
pm5.21ndd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.1 | . . . 4 | |
2 | pm5.21ndd.3 | . . . 4 | |
3 | 1, 2 | syld 45 | . . 3 |
4 | 3 | ibd 177 | . 2 |
5 | pm5.21ndd.2 | . . . . 5 | |
6 | 5, 2 | syld 45 | . . . 4 |
7 | bicom1 130 | . . . 4 | |
8 | 6, 7 | syl6 33 | . . 3 |
9 | 8 | ibd 177 | . 2 |
10 | 4, 9 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.21nd 911 sbcrext 3032 rmob 3047 epelg 4275 eqbrrdva 4781 relbrcnvg 4990 fmptco 5662 ovelrn 6001 brtpos2 6230 elpmg 6642 brdomg 6726 elfi2 6949 genpelvl 7474 genpelvu 7475 fzoval 10104 clim 11244 pceu 12249 mndpropd 12676 cnrest2 13030 cnptoprest2 13034 lmss 13040 reopnap 13332 limcdifap 13425 |
Copyright terms: Public domain | W3C validator |