Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.21ndd | Unicode version |
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ndd.1 | |
pm5.21ndd.2 | |
pm5.21ndd.3 |
Ref | Expression |
---|---|
pm5.21ndd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ndd.1 | . . . 4 | |
2 | pm5.21ndd.3 | . . . 4 | |
3 | 1, 2 | syld 45 | . . 3 |
4 | 3 | ibd 177 | . 2 |
5 | pm5.21ndd.2 | . . . . 5 | |
6 | 5, 2 | syld 45 | . . . 4 |
7 | bicom1 130 | . . . 4 | |
8 | 6, 7 | syl6 33 | . . 3 |
9 | 8 | ibd 177 | . 2 |
10 | 4, 9 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.21nd 906 sbcrext 3027 rmob 3042 epelg 4267 eqbrrdva 4773 relbrcnvg 4982 fmptco 5650 ovelrn 5986 brtpos2 6215 elpmg 6626 brdomg 6710 elfi2 6933 genpelvl 7449 genpelvu 7450 fzoval 10079 clim 11218 pceu 12223 cnrest2 12836 cnptoprest2 12840 lmss 12846 reopnap 13138 limcdifap 13231 |
Copyright terms: Public domain | W3C validator |