| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21ndd | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 |
|
| pm5.21ndd.2 |
|
| pm5.21ndd.3 |
|
| Ref | Expression |
|---|---|
| pm5.21ndd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.1 |
. . . 4
| |
| 2 | pm5.21ndd.3 |
. . . 4
| |
| 3 | 1, 2 | syld 45 |
. . 3
|
| 4 | 3 | ibd 178 |
. 2
|
| 5 | pm5.21ndd.2 |
. . . . 5
| |
| 6 | 5, 2 | syld 45 |
. . . 4
|
| 7 | bicom1 131 |
. . . 4
| |
| 8 | 6, 7 | syl6 33 |
. . 3
|
| 9 | 8 | ibd 178 |
. 2
|
| 10 | 4, 9 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nd 921 sbcrext 3106 rmob 3122 epelg 4380 eqbrrdva 4891 elrelimasn 5093 relbrcnvg 5106 fmptco 5800 ovelrn 6153 brtpos2 6395 elpmg 6809 brdomg 6895 elfi2 7135 genpelvl 7695 genpelvu 7696 fzoval 10340 nninfinf 10660 clim 11787 dvdsaddre2b 12347 pceu 12813 divsfval 13356 sgrppropd 13441 mndpropd 13468 issubg3 13724 resghm2b 13794 rngpropd 13913 dvdsrd 14052 opprsubrngg 14169 subrngpropd 14174 subrgpropd 14211 rhmpropd 14212 lmodprop2d 14306 cnrest2 14904 cnptoprest2 14908 lmss 14914 reopnap 15214 limcdifap 15330 iswlkg 16032 |
| Copyright terms: Public domain | W3C validator |