ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21ndd Unicode version

Theorem pm5.21ndd 706
Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
pm5.21ndd.1  |-  ( ph  ->  ( ch  ->  ps ) )
pm5.21ndd.2  |-  ( ph  ->  ( th  ->  ps ) )
pm5.21ndd.3  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
Assertion
Ref Expression
pm5.21ndd  |-  ( ph  ->  ( ch  <->  th )
)

Proof of Theorem pm5.21ndd
StepHypRef Expression
1 pm5.21ndd.1 . . . 4  |-  ( ph  ->  ( ch  ->  ps ) )
2 pm5.21ndd.3 . . . 4  |-  ( ph  ->  ( ps  ->  ( ch 
<->  th ) ) )
31, 2syld 45 . . 3  |-  ( ph  ->  ( ch  ->  ( ch 
<->  th ) ) )
43ibd 178 . 2  |-  ( ph  ->  ( ch  ->  th )
)
5 pm5.21ndd.2 . . . . 5  |-  ( ph  ->  ( th  ->  ps ) )
65, 2syld 45 . . . 4  |-  ( ph  ->  ( th  ->  ( ch 
<->  th ) ) )
7 bicom1 131 . . . 4  |-  ( ( ch  <->  th )  ->  ( th 
<->  ch ) )
86, 7syl6 33 . . 3  |-  ( ph  ->  ( th  ->  ( th 
<->  ch ) ) )
98ibd 178 . 2  |-  ( ph  ->  ( th  ->  ch ) )
104, 9impbid 129 1  |-  ( ph  ->  ( ch  <->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nd  917  sbcrext  3075  rmob  3090  epelg  4336  eqbrrdva  4847  elrelimasn  5047  relbrcnvg  5060  fmptco  5745  ovelrn  6094  brtpos2  6336  elpmg  6750  brdomg  6836  elfi2  7073  genpelvl  7624  genpelvu  7625  fzoval  10269  nninfinf  10586  clim  11534  dvdsaddre2b  12094  pceu  12560  divsfval  13102  sgrppropd  13187  mndpropd  13214  issubg3  13470  resghm2b  13540  rngpropd  13659  dvdsrd  13798  opprsubrngg  13915  subrngpropd  13920  subrgpropd  13957  rhmpropd  13958  lmodprop2d  14052  cnrest2  14650  cnptoprest2  14654  lmss  14660  reopnap  14960  limcdifap  15076
  Copyright terms: Public domain W3C validator