| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21ndd | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ndd.1 |
|
| pm5.21ndd.2 |
|
| pm5.21ndd.3 |
|
| Ref | Expression |
|---|---|
| pm5.21ndd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ndd.1 |
. . . 4
| |
| 2 | pm5.21ndd.3 |
. . . 4
| |
| 3 | 1, 2 | syld 45 |
. . 3
|
| 4 | 3 | ibd 178 |
. 2
|
| 5 | pm5.21ndd.2 |
. . . . 5
| |
| 6 | 5, 2 | syld 45 |
. . . 4
|
| 7 | bicom1 131 |
. . . 4
| |
| 8 | 6, 7 | syl6 33 |
. . 3
|
| 9 | 8 | ibd 178 |
. 2
|
| 10 | 4, 9 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nd 917 sbcrext 3075 rmob 3090 epelg 4335 eqbrrdva 4846 elrelimasn 5045 relbrcnvg 5058 fmptco 5740 ovelrn 6085 brtpos2 6327 elpmg 6741 brdomg 6825 elfi2 7056 genpelvl 7607 genpelvu 7608 fzoval 10252 nninfinf 10569 clim 11511 dvdsaddre2b 12071 pceu 12537 divsfval 13078 sgrppropd 13163 mndpropd 13190 issubg3 13446 resghm2b 13516 rngpropd 13635 dvdsrd 13774 opprsubrngg 13891 subrngpropd 13896 subrgpropd 13933 rhmpropd 13934 lmodprop2d 14028 cnrest2 14626 cnptoprest2 14630 lmss 14636 reopnap 14936 limcdifap 15052 |
| Copyright terms: Public domain | W3C validator |