ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg2 Unicode version

Theorem eltg2 14289
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, V, y

Proof of Theorem eltg2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tgval2 14287 . . 3  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  (
x  e.  y  /\  y  C_  z ) ) } )
21eleq2d 2266 . 2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  e.  { z  |  ( z 
C_  U. B  /\  A. x  e.  z  E. y  e.  B  (
x  e.  y  /\  y  C_  z ) ) } ) )
3 elex 2774 . . . 4  |-  ( A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) }  ->  A  e.  _V )
43adantl 277 . . 3  |-  ( ( B  e.  V  /\  A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) } )  ->  A  e.  _V )
5 uniexg 4474 . . . . . 6  |-  ( B  e.  V  ->  U. B  e.  _V )
6 ssexg 4172 . . . . . 6  |-  ( ( A  C_  U. B  /\  U. B  e.  _V )  ->  A  e.  _V )
75, 6sylan2 286 . . . . 5  |-  ( ( A  C_  U. B  /\  B  e.  V )  ->  A  e.  _V )
87ancoms 268 . . . 4  |-  ( ( B  e.  V  /\  A  C_  U. B )  ->  A  e.  _V )
98adantrr 479 . . 3  |-  ( ( B  e.  V  /\  ( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )  ->  A  e.  _V )
10 sseq1 3206 . . . . 5  |-  ( z  =  A  ->  (
z  C_  U. B  <->  A  C_  U. B
) )
11 sseq2 3207 . . . . . . . 8  |-  ( z  =  A  ->  (
y  C_  z  <->  y  C_  A ) )
1211anbi2d 464 . . . . . . 7  |-  ( z  =  A  ->  (
( x  e.  y  /\  y  C_  z
)  <->  ( x  e.  y  /\  y  C_  A ) ) )
1312rexbidv 2498 . . . . . 6  |-  ( z  =  A  ->  ( E. y  e.  B  ( x  e.  y  /\  y  C_  z )  <->  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
1413raleqbi1dv 2705 . . . . 5  |-  ( z  =  A  ->  ( A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
1510, 14anbi12d 473 . . . 4  |-  ( z  =  A  ->  (
( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) )  <->  ( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) ) )
1615elabg 2910 . . 3  |-  ( A  e.  _V  ->  ( A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) }  <-> 
( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) ) )
174, 9, 16pm5.21nd 917 . 2  |-  ( B  e.  V  ->  ( A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) }  <-> 
( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) ) )
182, 17bitrd 188 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763    C_ wss 3157   U.cuni 3839   ` cfv 5258   topGenctg 12925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-topgen 12931
This theorem is referenced by:  eltg2b  14290  tg1  14295  tgcl  14300  elmopn  14682  xmettx  14746
  Copyright terms: Public domain W3C validator