ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg2 Unicode version

Theorem eltg2 12847
Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, V, y

Proof of Theorem eltg2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tgval2 12845 . . 3  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  (
x  e.  y  /\  y  C_  z ) ) } )
21eleq2d 2240 . 2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  e.  { z  |  ( z 
C_  U. B  /\  A. x  e.  z  E. y  e.  B  (
x  e.  y  /\  y  C_  z ) ) } ) )
3 elex 2741 . . . 4  |-  ( A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) }  ->  A  e.  _V )
43adantl 275 . . 3  |-  ( ( B  e.  V  /\  A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) } )  ->  A  e.  _V )
5 uniexg 4424 . . . . . 6  |-  ( B  e.  V  ->  U. B  e.  _V )
6 ssexg 4128 . . . . . 6  |-  ( ( A  C_  U. B  /\  U. B  e.  _V )  ->  A  e.  _V )
75, 6sylan2 284 . . . . 5  |-  ( ( A  C_  U. B  /\  B  e.  V )  ->  A  e.  _V )
87ancoms 266 . . . 4  |-  ( ( B  e.  V  /\  A  C_  U. B )  ->  A  e.  _V )
98adantrr 476 . . 3  |-  ( ( B  e.  V  /\  ( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )  ->  A  e.  _V )
10 sseq1 3170 . . . . 5  |-  ( z  =  A  ->  (
z  C_  U. B  <->  A  C_  U. B
) )
11 sseq2 3171 . . . . . . . 8  |-  ( z  =  A  ->  (
y  C_  z  <->  y  C_  A ) )
1211anbi2d 461 . . . . . . 7  |-  ( z  =  A  ->  (
( x  e.  y  /\  y  C_  z
)  <->  ( x  e.  y  /\  y  C_  A ) ) )
1312rexbidv 2471 . . . . . 6  |-  ( z  =  A  ->  ( E. y  e.  B  ( x  e.  y  /\  y  C_  z )  <->  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
1413raleqbi1dv 2673 . . . . 5  |-  ( z  =  A  ->  ( A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
1510, 14anbi12d 470 . . . 4  |-  ( z  =  A  ->  (
( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) )  <->  ( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) ) )
1615elabg 2876 . . 3  |-  ( A  e.  _V  ->  ( A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) }  <-> 
( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) ) )
174, 9, 16pm5.21nd 911 . 2  |-  ( B  e.  V  ->  ( A  e.  { z  |  ( z  C_  U. B  /\  A. x  e.  z  E. y  e.  B  ( x  e.  y  /\  y  C_  z ) ) }  <-> 
( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) ) )
182, 17bitrd 187 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   _Vcvv 2730    C_ wss 3121   U.cuni 3796   ` cfv 5198   topGenctg 12594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-topgen 12600
This theorem is referenced by:  eltg2b  12848  tg1  12853  tgcl  12858  elmopn  13240  xmettx  13304
  Copyright terms: Public domain W3C validator