| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eltg2 | Unicode version | ||
| Description: Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltg2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval2 14598 |
. . 3
| |
| 2 | 1 | eleq2d 2276 |
. 2
|
| 3 | elex 2785 |
. . . 4
| |
| 4 | 3 | adantl 277 |
. . 3
|
| 5 | uniexg 4494 |
. . . . . 6
| |
| 6 | ssexg 4191 |
. . . . . 6
| |
| 7 | 5, 6 | sylan2 286 |
. . . . 5
|
| 8 | 7 | ancoms 268 |
. . . 4
|
| 9 | 8 | adantrr 479 |
. . 3
|
| 10 | sseq1 3220 |
. . . . 5
| |
| 11 | sseq2 3221 |
. . . . . . . 8
| |
| 12 | 11 | anbi2d 464 |
. . . . . . 7
|
| 13 | 12 | rexbidv 2508 |
. . . . . 6
|
| 14 | 13 | raleqbi1dv 2715 |
. . . . 5
|
| 15 | 10, 14 | anbi12d 473 |
. . . 4
|
| 16 | 15 | elabg 2923 |
. . 3
|
| 17 | 4, 9, 16 | pm5.21nd 918 |
. 2
|
| 18 | 2, 17 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-topgen 13167 |
| This theorem is referenced by: eltg2b 14601 tg1 14606 tgcl 14611 elmopn 14993 xmettx 15057 |
| Copyright terms: Public domain | W3C validator |