ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg Unicode version

Theorem eltg 14231
Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  C_  U. ( B  i^i  ~P A ) ) )

Proof of Theorem eltg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tgval 12876 . . 3  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
21eleq2d 2263 . 2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) } ) )
3 elex 2771 . . . 4  |-  ( A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) }  ->  A  e.  _V )
43adantl 277 . . 3  |-  ( ( B  e.  V  /\  A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) } )  ->  A  e.  _V )
5 inex1g 4166 . . . . . 6  |-  ( B  e.  V  ->  ( B  i^i  ~P A )  e.  _V )
6 uniexg 4471 . . . . . 6  |-  ( ( B  i^i  ~P A
)  e.  _V  ->  U. ( B  i^i  ~P A )  e.  _V )
75, 6syl 14 . . . . 5  |-  ( B  e.  V  ->  U. ( B  i^i  ~P A )  e.  _V )
8 ssexg 4169 . . . . 5  |-  ( ( A  C_  U. ( B  i^i  ~P A )  /\  U. ( B  i^i  ~P A )  e.  _V )  ->  A  e.  _V )
97, 8sylan2 286 . . . 4  |-  ( ( A  C_  U. ( B  i^i  ~P A )  /\  B  e.  V
)  ->  A  e.  _V )
109ancoms 268 . . 3  |-  ( ( B  e.  V  /\  A  C_  U. ( B  i^i  ~P A ) )  ->  A  e.  _V )
11 id 19 . . . . 5  |-  ( x  =  A  ->  x  =  A )
12 pweq 3605 . . . . . . 7  |-  ( x  =  A  ->  ~P x  =  ~P A
)
1312ineq2d 3361 . . . . . 6  |-  ( x  =  A  ->  ( B  i^i  ~P x )  =  ( B  i^i  ~P A ) )
1413unieqd 3847 . . . . 5  |-  ( x  =  A  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P A ) )
1511, 14sseq12d 3211 . . . 4  |-  ( x  =  A  ->  (
x  C_  U. ( B  i^i  ~P x )  <-> 
A  C_  U. ( B  i^i  ~P A ) ) )
1615elabg 2907 . . 3  |-  ( A  e.  _V  ->  ( A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) }  <->  A  C_  U. ( B  i^i  ~P A ) ) )
174, 10, 16pm5.21nd 917 . 2  |-  ( B  e.  V  ->  ( A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) }  <->  A  C_  U. ( B  i^i  ~P A ) ) )
182, 17bitrd 188 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  C_  U. ( B  i^i  ~P A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760    i^i cin 3153    C_ wss 3154   ~Pcpw 3602   U.cuni 3836   ` cfv 5255   topGenctg 12868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-topgen 12874
This theorem is referenced by:  eltg4i  14234  eltg3i  14235  bastg  14240  tgss  14242  eltop  14248
  Copyright terms: Public domain W3C validator