ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltg Unicode version

Theorem eltg 14466
Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
eltg  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  C_  U. ( B  i^i  ~P A ) ) )

Proof of Theorem eltg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tgval 13036 . . 3  |-  ( B  e.  V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
21eleq2d 2274 . 2  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) } ) )
3 elex 2782 . . . 4  |-  ( A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) }  ->  A  e.  _V )
43adantl 277 . . 3  |-  ( ( B  e.  V  /\  A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) } )  ->  A  e.  _V )
5 inex1g 4179 . . . . . 6  |-  ( B  e.  V  ->  ( B  i^i  ~P A )  e.  _V )
6 uniexg 4485 . . . . . 6  |-  ( ( B  i^i  ~P A
)  e.  _V  ->  U. ( B  i^i  ~P A )  e.  _V )
75, 6syl 14 . . . . 5  |-  ( B  e.  V  ->  U. ( B  i^i  ~P A )  e.  _V )
8 ssexg 4182 . . . . 5  |-  ( ( A  C_  U. ( B  i^i  ~P A )  /\  U. ( B  i^i  ~P A )  e.  _V )  ->  A  e.  _V )
97, 8sylan2 286 . . . 4  |-  ( ( A  C_  U. ( B  i^i  ~P A )  /\  B  e.  V
)  ->  A  e.  _V )
109ancoms 268 . . 3  |-  ( ( B  e.  V  /\  A  C_  U. ( B  i^i  ~P A ) )  ->  A  e.  _V )
11 id 19 . . . . 5  |-  ( x  =  A  ->  x  =  A )
12 pweq 3618 . . . . . . 7  |-  ( x  =  A  ->  ~P x  =  ~P A
)
1312ineq2d 3373 . . . . . 6  |-  ( x  =  A  ->  ( B  i^i  ~P x )  =  ( B  i^i  ~P A ) )
1413unieqd 3860 . . . . 5  |-  ( x  =  A  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P A ) )
1511, 14sseq12d 3223 . . . 4  |-  ( x  =  A  ->  (
x  C_  U. ( B  i^i  ~P x )  <-> 
A  C_  U. ( B  i^i  ~P A ) ) )
1615elabg 2918 . . 3  |-  ( A  e.  _V  ->  ( A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) }  <->  A  C_  U. ( B  i^i  ~P A ) ) )
174, 10, 16pm5.21nd 917 . 2  |-  ( B  e.  V  ->  ( A  e.  { x  |  x  C_  U. ( B  i^i  ~P x ) }  <->  A  C_  U. ( B  i^i  ~P A ) ) )
182, 17bitrd 188 1  |-  ( B  e.  V  ->  ( A  e.  ( topGen `  B )  <->  A  C_  U. ( B  i^i  ~P A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1372    e. wcel 2175   {cab 2190   _Vcvv 2771    i^i cin 3164    C_ wss 3165   ~Pcpw 3615   U.cuni 3849   ` cfv 5270   topGenctg 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-topgen 13034
This theorem is referenced by:  eltg4i  14469  eltg3i  14470  bastg  14475  tgss  14477  eltop  14483
  Copyright terms: Public domain W3C validator