ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  po0 Unicode version

Theorem po0 4289
Description: Any relation is a partial ordering of the empty set. (Contributed by NM, 28-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
po0  |-  R  Po  (/)

Proof of Theorem po0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3510 . 2  |-  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )
2 df-po 4274 . 2  |-  ( R  Po  (/)  <->  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
31, 2mpbir 145 1  |-  R  Po  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wral 2444   (/)c0 3409   class class class wbr 3982    Po wpo 4272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-nul 3410  df-po 4274
This theorem is referenced by:  so0  4304
  Copyright terms: Public domain W3C validator