ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  po0 Unicode version

Theorem po0 4359
Description: Any relation is a partial ordering of the empty set. (Contributed by NM, 28-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
po0  |-  R  Po  (/)

Proof of Theorem po0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3562 . 2  |-  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) )
2 df-po 4344 . 2  |-  ( R  Po  (/)  <->  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( -.  x R x  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
31, 2mpbir 146 1  |-  R  Po  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wral 2484   (/)c0 3460   class class class wbr 4045    Po wpo 4342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-dif 3168  df-nul 3461  df-po 4344
This theorem is referenced by:  so0  4374
  Copyright terms: Public domain W3C validator