ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  so0 Unicode version

Theorem so0 4416
Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
so0  |-  R  Or  (/)

Proof of Theorem so0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 po0 4401 . 2  |-  R  Po  (/)
2 ral0 3593 . 2  |-  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( x R y  ->  ( x R z  \/  z R y ) )
3 df-iso 4387 . 2  |-  ( R  Or  (/)  <->  ( R  Po  (/) 
/\  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( x R y  ->  ( x R z  \/  z R y ) ) ) )
41, 2, 3mpbir2an 948 1  |-  R  Or  (/)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713   A.wral 2508   (/)c0 3491   class class class wbr 4082    Po wpo 4384    Or wor 4385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-nul 3492  df-po 4386  df-iso 4387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator