ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  so0 Unicode version

Theorem so0 4357
Description: Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
so0  |-  R  Or  (/)

Proof of Theorem so0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 po0 4342 . 2  |-  R  Po  (/)
2 ral0 3548 . 2  |-  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( x R y  ->  ( x R z  \/  z R y ) )
3 df-iso 4328 . 2  |-  ( R  Or  (/)  <->  ( R  Po  (/) 
/\  A. x  e.  (/)  A. y  e.  (/)  A. z  e.  (/)  ( x R y  ->  ( x R z  \/  z R y ) ) ) )
41, 2, 3mpbir2an 944 1  |-  R  Or  (/)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709   A.wral 2472   (/)c0 3446   class class class wbr 4029    Po wpo 4325    Or wor 4326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3155  df-nul 3447  df-po 4327  df-iso 4328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator