ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poeq2 Unicode version

Theorem poeq2 4312
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poeq2  |-  ( A  =  B  ->  ( R  Po  A  <->  R  Po  B ) )

Proof of Theorem poeq2
StepHypRef Expression
1 eqimss2 3222 . . 3  |-  ( A  =  B  ->  B  C_  A )
2 poss 4310 . . 3  |-  ( B 
C_  A  ->  ( R  Po  A  ->  R  Po  B ) )
31, 2syl 14 . 2  |-  ( A  =  B  ->  ( R  Po  A  ->  R  Po  B ) )
4 eqimss 3221 . . 3  |-  ( A  =  B  ->  A  C_  B )
5 poss 4310 . . 3  |-  ( A 
C_  B  ->  ( R  Po  B  ->  R  Po  A ) )
64, 5syl 14 . 2  |-  ( A  =  B  ->  ( R  Po  B  ->  R  Po  A ) )
73, 6impbid 129 1  |-  ( A  =  B  ->  ( R  Po  A  <->  R  Po  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1363    C_ wss 3141    Po wpo 4306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-11 1516  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-ral 2470  df-in 3147  df-ss 3154  df-po 4308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator