ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poeq2 Unicode version

Theorem poeq2 4127
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poeq2  |-  ( A  =  B  ->  ( R  Po  A  <->  R  Po  B ) )

Proof of Theorem poeq2
StepHypRef Expression
1 eqimss2 3079 . . 3  |-  ( A  =  B  ->  B  C_  A )
2 poss 4125 . . 3  |-  ( B 
C_  A  ->  ( R  Po  A  ->  R  Po  B ) )
31, 2syl 14 . 2  |-  ( A  =  B  ->  ( R  Po  A  ->  R  Po  B ) )
4 eqimss 3078 . . 3  |-  ( A  =  B  ->  A  C_  B )
5 poss 4125 . . 3  |-  ( A 
C_  B  ->  ( R  Po  B  ->  R  Po  A ) )
64, 5syl 14 . 2  |-  ( A  =  B  ->  ( R  Po  B  ->  R  Po  A ) )
73, 6impbid 127 1  |-  ( A  =  B  ->  ( R  Po  A  <->  R  Po  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1289    C_ wss 2999    Po wpo 4121
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-11 1442  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-ral 2364  df-in 3005  df-ss 3012  df-po 4123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator