ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poeq2 Unicode version

Theorem poeq2 4391
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poeq2  |-  ( A  =  B  ->  ( R  Po  A  <->  R  Po  B ) )

Proof of Theorem poeq2
StepHypRef Expression
1 eqimss2 3279 . . 3  |-  ( A  =  B  ->  B  C_  A )
2 poss 4389 . . 3  |-  ( B 
C_  A  ->  ( R  Po  A  ->  R  Po  B ) )
31, 2syl 14 . 2  |-  ( A  =  B  ->  ( R  Po  A  ->  R  Po  B ) )
4 eqimss 3278 . . 3  |-  ( A  =  B  ->  A  C_  B )
5 poss 4389 . . 3  |-  ( A 
C_  B  ->  ( R  Po  B  ->  R  Po  A ) )
64, 5syl 14 . 2  |-  ( A  =  B  ->  ( R  Po  B  ->  R  Po  A ) )
73, 6impbid 129 1  |-  ( A  =  B  ->  ( R  Po  A  <->  R  Po  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    C_ wss 3197    Po wpo 4385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-in 3203  df-ss 3210  df-po 4387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator