ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpo Unicode version

Theorem nfpo 4392
Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r  |-  F/_ x R
nfpo.a  |-  F/_ x A
Assertion
Ref Expression
nfpo  |-  F/ x  R  Po  A

Proof of Theorem nfpo
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-po 4387 . 2  |-  ( R  Po  A  <->  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( -.  a R a  /\  (
( a R b  /\  b R c )  ->  a R
c ) ) )
2 nfpo.a . . 3  |-  F/_ x A
3 nfcv 2372 . . . . . . . 8  |-  F/_ x
a
4 nfpo.r . . . . . . . 8  |-  F/_ x R
53, 4, 3nfbr 4130 . . . . . . 7  |-  F/ x  a R a
65nfn 1704 . . . . . 6  |-  F/ x  -.  a R a
7 nfcv 2372 . . . . . . . . 9  |-  F/_ x
b
83, 4, 7nfbr 4130 . . . . . . . 8  |-  F/ x  a R b
9 nfcv 2372 . . . . . . . . 9  |-  F/_ x
c
107, 4, 9nfbr 4130 . . . . . . . 8  |-  F/ x  b R c
118, 10nfan 1611 . . . . . . 7  |-  F/ x
( a R b  /\  b R c )
123, 4, 9nfbr 4130 . . . . . . 7  |-  F/ x  a R c
1311, 12nfim 1618 . . . . . 6  |-  F/ x
( ( a R b  /\  b R c )  ->  a R c )
146, 13nfan 1611 . . . . 5  |-  F/ x
( -.  a R a  /\  ( ( a R b  /\  b R c )  -> 
a R c ) )
152, 14nfralxy 2568 . . . 4  |-  F/ x A. c  e.  A  ( -.  a R
a  /\  ( (
a R b  /\  b R c )  -> 
a R c ) )
162, 15nfralxy 2568 . . 3  |-  F/ x A. b  e.  A  A. c  e.  A  ( -.  a R
a  /\  ( (
a R b  /\  b R c )  -> 
a R c ) )
172, 16nfralxy 2568 . 2  |-  F/ x A. a  e.  A  A. b  e.  A  A. c  e.  A  ( -.  a R
a  /\  ( (
a R b  /\  b R c )  -> 
a R c ) )
181, 17nfxfr 1520 1  |-  F/ x  R  Po  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   F/wnf 1506   F/_wnfc 2359   A.wral 2508   class class class wbr 4083    Po wpo 4385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-po 4387
This theorem is referenced by:  nfso  4393
  Copyright terms: Public domain W3C validator