ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfpo Unicode version

Theorem nfpo 4336
Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r  |-  F/_ x R
nfpo.a  |-  F/_ x A
Assertion
Ref Expression
nfpo  |-  F/ x  R  Po  A

Proof of Theorem nfpo
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-po 4331 . 2  |-  ( R  Po  A  <->  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( -.  a R a  /\  (
( a R b  /\  b R c )  ->  a R
c ) ) )
2 nfpo.a . . 3  |-  F/_ x A
3 nfcv 2339 . . . . . . . 8  |-  F/_ x
a
4 nfpo.r . . . . . . . 8  |-  F/_ x R
53, 4, 3nfbr 4079 . . . . . . 7  |-  F/ x  a R a
65nfn 1672 . . . . . 6  |-  F/ x  -.  a R a
7 nfcv 2339 . . . . . . . . 9  |-  F/_ x
b
83, 4, 7nfbr 4079 . . . . . . . 8  |-  F/ x  a R b
9 nfcv 2339 . . . . . . . . 9  |-  F/_ x
c
107, 4, 9nfbr 4079 . . . . . . . 8  |-  F/ x  b R c
118, 10nfan 1579 . . . . . . 7  |-  F/ x
( a R b  /\  b R c )
123, 4, 9nfbr 4079 . . . . . . 7  |-  F/ x  a R c
1311, 12nfim 1586 . . . . . 6  |-  F/ x
( ( a R b  /\  b R c )  ->  a R c )
146, 13nfan 1579 . . . . 5  |-  F/ x
( -.  a R a  /\  ( ( a R b  /\  b R c )  -> 
a R c ) )
152, 14nfralxy 2535 . . . 4  |-  F/ x A. c  e.  A  ( -.  a R
a  /\  ( (
a R b  /\  b R c )  -> 
a R c ) )
162, 15nfralxy 2535 . . 3  |-  F/ x A. b  e.  A  A. c  e.  A  ( -.  a R
a  /\  ( (
a R b  /\  b R c )  -> 
a R c ) )
172, 16nfralxy 2535 . 2  |-  F/ x A. a  e.  A  A. b  e.  A  A. c  e.  A  ( -.  a R
a  /\  ( (
a R b  /\  b R c )  -> 
a R c ) )
181, 17nfxfr 1488 1  |-  F/ x  R  Po  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   F/wnf 1474   F/_wnfc 2326   A.wral 2475   class class class wbr 4033    Po wpo 4329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-po 4331
This theorem is referenced by:  nfso  4337
  Copyright terms: Public domain W3C validator