| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > poss | Unicode version | ||
| Description: Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| poss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 3256 |
. . 3
| |
| 2 | ssralv 3256 |
. . . . 5
| |
| 3 | ssralv 3256 |
. . . . . 6
| |
| 4 | 3 | ralimdv 2573 |
. . . . 5
|
| 5 | 2, 4 | syld 45 |
. . . 4
|
| 6 | 5 | ralimdv 2573 |
. . 3
|
| 7 | 1, 6 | syld 45 |
. 2
|
| 8 | df-po 4342 |
. 2
| |
| 9 | df-po 4342 |
. 2
| |
| 10 | 7, 8, 9 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-in 3171 df-ss 3178 df-po 4342 |
| This theorem is referenced by: poeq2 4346 soss 4360 fimaxq 10970 |
| Copyright terms: Public domain | W3C validator |