| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > poss | Unicode version | ||
| Description: Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| poss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv 3265 |
. . 3
| |
| 2 | ssralv 3265 |
. . . . 5
| |
| 3 | ssralv 3265 |
. . . . . 6
| |
| 4 | 3 | ralimdv 2576 |
. . . . 5
|
| 5 | 2, 4 | syld 45 |
. . . 4
|
| 6 | 5 | ralimdv 2576 |
. . 3
|
| 7 | 1, 6 | syld 45 |
. 2
|
| 8 | df-po 4361 |
. 2
| |
| 9 | df-po 4361 |
. 2
| |
| 10 | 7, 8, 9 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 df-in 3180 df-ss 3187 df-po 4361 |
| This theorem is referenced by: poeq2 4365 soss 4379 fimaxq 11009 |
| Copyright terms: Public domain | W3C validator |