Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > poss | Unicode version |
Description: Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
poss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 3211 | . . 3 | |
2 | ssralv 3211 | . . . . 5 | |
3 | ssralv 3211 | . . . . . 6 | |
4 | 3 | ralimdv 2538 | . . . . 5 |
5 | 2, 4 | syld 45 | . . . 4 |
6 | 5 | ralimdv 2538 | . . 3 |
7 | 1, 6 | syld 45 | . 2 |
8 | df-po 4279 | . 2 | |
9 | df-po 4279 | . 2 | |
10 | 7, 8, 9 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wral 2448 wss 3121 class class class wbr 3987 wpo 4277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-in 3127 df-ss 3134 df-po 4279 |
This theorem is referenced by: poeq2 4283 soss 4297 fimaxq 10749 |
Copyright terms: Public domain | W3C validator |