ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 Unicode version

Theorem eqimss2 3212
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2  |-  ( B  =  A  ->  A  C_  B )

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 3211 . 2  |-  ( A  =  B  ->  A  C_  B )
21eqcoms 2180 1  |-  ( B  =  A  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144
This theorem is referenced by:  disjeq2  3986  disjeq1  3989  poeq2  4302  seeq1  4341  seeq2  4342  dmcoeq  4901  xp11m  5069  funeq  5238  fconst3m  5737  tposeq  6250  undifdcss  6924  ennnfonelemk  12403  ennnfonelemss  12413  qnnen  12434  imasaddfnlemg  12740  topgele  13614  topontopn  13622  txdis  13862
  Copyright terms: Public domain W3C validator