| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss2 | Unicode version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3278 |
. 2
| |
| 2 | 1 | eqcoms 2232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ifpprsnssdc 3774 disjeq2 4063 disjeq1 4066 poeq2 4391 seeq1 4430 seeq2 4431 dmcoeq 4997 xp11m 5167 funeq 5338 fconst3m 5858 tposeq 6393 undifdcss 7085 nninfctlemfo 12561 ennnfonelemk 12971 ennnfonelemss 12981 qnnen 13002 imasaddfnlemg 13347 topgele 14703 topontopn 14711 txdis 14951 edgstruct 15864 |
| Copyright terms: Public domain | W3C validator |