| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss2 | Unicode version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3238 |
. 2
| |
| 2 | 1 | eqcoms 2199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: disjeq2 4015 disjeq1 4018 poeq2 4336 seeq1 4375 seeq2 4376 dmcoeq 4939 xp11m 5109 funeq 5279 fconst3m 5784 tposeq 6314 undifdcss 6993 nninfctlemfo 12232 ennnfonelemk 12642 ennnfonelemss 12652 qnnen 12673 imasaddfnlemg 13016 topgele 14349 topontopn 14357 txdis 14597 |
| Copyright terms: Public domain | W3C validator |