| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss2 | Unicode version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| eqimss2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3255 |
. 2
| |
| 2 | 1 | eqcoms 2210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: disjeq2 4039 disjeq1 4042 poeq2 4365 seeq1 4404 seeq2 4405 dmcoeq 4970 xp11m 5140 funeq 5310 fconst3m 5826 tposeq 6356 undifdcss 7046 nninfctlemfo 12476 ennnfonelemk 12886 ennnfonelemss 12896 qnnen 12917 imasaddfnlemg 13261 topgele 14616 topontopn 14624 txdis 14864 edgstruct 15775 |
| Copyright terms: Public domain | W3C validator |