| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqimss2 | Unicode version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) | 
| Ref | Expression | 
|---|---|
| eqimss2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqimss 3237 | 
. 2
 | |
| 2 | 1 | eqcoms 2199 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: disjeq2 4014 disjeq1 4017 poeq2 4335 seeq1 4374 seeq2 4375 dmcoeq 4938 xp11m 5108 funeq 5278 fconst3m 5781 tposeq 6305 undifdcss 6984 nninfctlemfo 12207 ennnfonelemk 12617 ennnfonelemss 12627 qnnen 12648 imasaddfnlemg 12957 topgele 14265 topontopn 14273 txdis 14513 | 
| Copyright terms: Public domain | W3C validator |