![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqimss2 | Unicode version |
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
eqimss2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3234 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eqcoms 2196 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: disjeq2 4011 disjeq1 4014 poeq2 4332 seeq1 4371 seeq2 4372 dmcoeq 4935 xp11m 5105 funeq 5275 fconst3m 5778 tposeq 6302 undifdcss 6981 nninfctlemfo 12180 ennnfonelemk 12560 ennnfonelemss 12570 qnnen 12591 imasaddfnlemg 12900 topgele 14208 topontopn 14216 txdis 14456 |
Copyright terms: Public domain | W3C validator |