ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss2 Unicode version

Theorem eqimss2 3082
Description: Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
eqimss2  |-  ( B  =  A  ->  A  C_  B )

Proof of Theorem eqimss2
StepHypRef Expression
1 eqimss 3081 . 2  |-  ( A  =  B  ->  A  C_  B )
21eqcoms 2092 1  |-  ( B  =  A  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    C_ wss 3002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-in 3008  df-ss 3015
This theorem is referenced by:  disjeq2  3834  disjeq1  3837  poeq2  4138  seeq1  4177  seeq2  4178  dmcoeq  4720  xp11m  4884  funeq  5050  fconst3m  5532  tposeq  6028  undifdcss  6689  topgele  11790  topontopn  11798
  Copyright terms: Public domain W3C validator