![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > poeq2 | GIF version |
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
poeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 ↔ 𝑅 Po 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3238 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | poss 4333 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Po 𝐴 → 𝑅 Po 𝐵)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 → 𝑅 Po 𝐵)) |
4 | eqimss 3237 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
5 | poss 4333 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) |
7 | 3, 6 | impbid 129 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 ↔ 𝑅 Po 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⊆ wss 3157 Po wpo 4329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-in 3163 df-ss 3170 df-po 4331 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |