Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > poeq2 | GIF version |
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
poeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 ↔ 𝑅 Po 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3197 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
2 | poss 4276 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Po 𝐴 → 𝑅 Po 𝐵)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 → 𝑅 Po 𝐵)) |
4 | eqimss 3196 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
5 | poss 4276 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) |
7 | 3, 6 | impbid 128 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 ↔ 𝑅 Po 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ⊆ wss 3116 Po wpo 4272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-in 3122 df-ss 3129 df-po 4274 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |