Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  poeq2 GIF version

Theorem poeq2 4180
 Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poeq2 (𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))

Proof of Theorem poeq2
StepHypRef Expression
1 eqimss2 3116 . . 3 (𝐴 = 𝐵𝐵𝐴)
2 poss 4178 . . 3 (𝐵𝐴 → (𝑅 Po 𝐴𝑅 Po 𝐵))
31, 2syl 14 . 2 (𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))
4 eqimss 3115 . . 3 (𝐴 = 𝐵𝐴𝐵)
5 poss 4178 . . 3 (𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
64, 5syl 14 . 2 (𝐴 = 𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
73, 6impbid 128 1 (𝐴 = 𝐵 → (𝑅 Po 𝐴𝑅 Po 𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1312   ⊆ wss 3035   Po wpo 4174 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-11 1465  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095 This theorem depends on definitions:  df-bi 116  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-ral 2393  df-in 3041  df-ss 3048  df-po 4176 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator