ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss Unicode version

Theorem eqimss 3247
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
eqimss  |-  ( A  =  B  ->  A  C_  B )

Proof of Theorem eqimss
StepHypRef Expression
1 eqss 3208 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
21simplbi 274 1  |-  ( A  =  B  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  eqimss2  3248  uneqin  3424  sssnr  3794  sssnm  3795  ssprr  3797  sstpr  3798  snsspw  3805  pwpwssunieq  4016  elpwuni  4017  disjeq2  4025  disjeq1  4028  pwne  4204  pwssunim  4331  poeq2  4347  seeq1  4386  seeq2  4387  trsucss  4470  onsucelsucr  4556  xp11m  5121  funeq  5291  fnresdm  5385  fssxp  5443  ffdm  5446  fcoi1  5456  fof  5498  dff1o2  5527  fvmptss2  5654  fvmptssdm  5664  fprg  5767  dff1o6  5845  tposeq  6333  el2oss1o  6529  nntri1  6582  nntri2or2  6584  nnsseleq  6587  infnninf  7226  infnninfOLD  7227  nninfwlpoimlemg  7277  exmidontri2or  7355  frec2uzf1od  10551  hashinfuni  10922  setsresg  12870  setsslid  12883  strle1g  12938  cncnpi  14700  hmeores  14787  limcimolemlt  15136  recnprss  15159  plycoeid3  15229  0nninf  15941  nninfall  15946
  Copyright terms: Public domain W3C validator