![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqimss | Unicode version |
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
eqimss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3194 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: eqimss2 3234 uneqin 3410 sssnr 3779 sssnm 3780 ssprr 3782 sstpr 3783 snsspw 3790 pwpwssunieq 4001 elpwuni 4002 disjeq2 4010 disjeq1 4013 pwne 4189 pwssunim 4315 poeq2 4331 seeq1 4370 seeq2 4371 trsucss 4454 onsucelsucr 4540 xp11m 5104 funeq 5274 fnresdm 5363 fssxp 5421 ffdm 5424 fcoi1 5434 fof 5476 dff1o2 5505 fvmptss2 5632 fvmptssdm 5642 fprg 5741 dff1o6 5819 tposeq 6300 el2oss1o 6496 nntri1 6549 nntri2or2 6551 nnsseleq 6554 infnninf 7183 infnninfOLD 7184 nninfwlpoimlemg 7234 exmidontri2or 7303 frec2uzf1od 10477 hashinfuni 10848 setsresg 12656 setsslid 12669 strle1g 12724 cncnpi 14396 hmeores 14483 limcimolemlt 14818 recnprss 14841 0nninf 15494 nninfall 15499 |
Copyright terms: Public domain | W3C validator |