| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss | Unicode version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| eqimss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3239 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqimss2 3279 uneqin 3455 ssprsseq 3830 sssnr 3831 sssnm 3832 ssprr 3834 sstpr 3835 snsspw 3842 pwpwssunieq 4054 elpwuni 4055 disjeq2 4063 disjeq1 4066 pwne 4244 pwssunim 4375 poeq2 4391 seeq1 4430 seeq2 4431 trsucss 4514 onsucelsucr 4600 xp11m 5167 funeq 5338 fnresdm 5432 fssxp 5491 ffdm 5494 fcoi1 5506 fof 5548 dff1o2 5577 fvmptss2 5709 fvmptssdm 5719 fprg 5822 dff1o6 5900 tposeq 6393 el2oss1o 6589 nntri1 6642 nntri2or2 6644 nnsseleq 6647 infnninf 7291 infnninfOLD 7292 nninfwlpoimlemg 7342 exmidontri2or 7428 frec2uzf1od 10628 hashinfuni 10999 setsresg 13070 setsslid 13083 strle1g 13139 cncnpi 14902 hmeores 14989 limcimolemlt 15338 recnprss 15361 plycoeid3 15431 0nninf 16370 nninfall 16375 |
| Copyright terms: Public domain | W3C validator |