| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss | Unicode version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| eqimss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3208 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqimss2 3248 uneqin 3424 sssnr 3794 sssnm 3795 ssprr 3797 sstpr 3798 snsspw 3805 pwpwssunieq 4016 elpwuni 4017 disjeq2 4025 disjeq1 4028 pwne 4205 pwssunim 4332 poeq2 4348 seeq1 4387 seeq2 4388 trsucss 4471 onsucelsucr 4557 xp11m 5122 funeq 5292 fnresdm 5386 fssxp 5445 ffdm 5448 fcoi1 5458 fof 5500 dff1o2 5529 fvmptss2 5656 fvmptssdm 5666 fprg 5769 dff1o6 5847 tposeq 6335 el2oss1o 6531 nntri1 6584 nntri2or2 6586 nnsseleq 6589 infnninf 7228 infnninfOLD 7229 nninfwlpoimlemg 7279 exmidontri2or 7357 frec2uzf1od 10553 hashinfuni 10924 setsresg 12903 setsslid 12916 strle1g 12971 cncnpi 14733 hmeores 14820 limcimolemlt 15169 recnprss 15192 plycoeid3 15262 0nninf 15978 nninfall 15983 |
| Copyright terms: Public domain | W3C validator |