ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss Unicode version

Theorem eqimss 3247
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
eqimss  |-  ( A  =  B  ->  A  C_  B )

Proof of Theorem eqimss
StepHypRef Expression
1 eqss 3208 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
21simplbi 274 1  |-  ( A  =  B  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  eqimss2  3248  uneqin  3424  sssnr  3794  sssnm  3795  ssprr  3797  sstpr  3798  snsspw  3805  pwpwssunieq  4016  elpwuni  4017  disjeq2  4025  disjeq1  4028  pwne  4205  pwssunim  4332  poeq2  4348  seeq1  4387  seeq2  4388  trsucss  4471  onsucelsucr  4557  xp11m  5122  funeq  5292  fnresdm  5386  fssxp  5445  ffdm  5448  fcoi1  5458  fof  5500  dff1o2  5529  fvmptss2  5656  fvmptssdm  5666  fprg  5769  dff1o6  5847  tposeq  6335  el2oss1o  6531  nntri1  6584  nntri2or2  6586  nnsseleq  6589  infnninf  7228  infnninfOLD  7229  nninfwlpoimlemg  7279  exmidontri2or  7357  frec2uzf1od  10553  hashinfuni  10924  setsresg  12903  setsslid  12916  strle1g  12971  cncnpi  14733  hmeores  14820  limcimolemlt  15169  recnprss  15192  plycoeid3  15262  0nninf  15978  nninfall  15983
  Copyright terms: Public domain W3C validator