| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss | Unicode version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| eqimss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3208 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: eqimss2 3248 uneqin 3424 sssnr 3794 sssnm 3795 ssprr 3797 sstpr 3798 snsspw 3805 pwpwssunieq 4016 elpwuni 4017 disjeq2 4025 disjeq1 4028 pwne 4204 pwssunim 4331 poeq2 4347 seeq1 4386 seeq2 4387 trsucss 4470 onsucelsucr 4556 xp11m 5121 funeq 5291 fnresdm 5385 fssxp 5443 ffdm 5446 fcoi1 5456 fof 5498 dff1o2 5527 fvmptss2 5654 fvmptssdm 5664 fprg 5767 dff1o6 5845 tposeq 6333 el2oss1o 6529 nntri1 6582 nntri2or2 6584 nnsseleq 6587 infnninf 7226 infnninfOLD 7227 nninfwlpoimlemg 7277 exmidontri2or 7355 frec2uzf1od 10551 hashinfuni 10922 setsresg 12870 setsslid 12883 strle1g 12938 cncnpi 14700 hmeores 14787 limcimolemlt 15136 recnprss 15159 plycoeid3 15229 0nninf 15941 nninfall 15946 |
| Copyright terms: Public domain | W3C validator |