![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqimss | Unicode version |
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
eqimss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3195 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: eqimss2 3235 uneqin 3411 sssnr 3780 sssnm 3781 ssprr 3783 sstpr 3784 snsspw 3791 pwpwssunieq 4002 elpwuni 4003 disjeq2 4011 disjeq1 4014 pwne 4190 pwssunim 4316 poeq2 4332 seeq1 4371 seeq2 4372 trsucss 4455 onsucelsucr 4541 xp11m 5105 funeq 5275 fnresdm 5364 fssxp 5422 ffdm 5425 fcoi1 5435 fof 5477 dff1o2 5506 fvmptss2 5633 fvmptssdm 5643 fprg 5742 dff1o6 5820 tposeq 6302 el2oss1o 6498 nntri1 6551 nntri2or2 6553 nnsseleq 6556 infnninf 7185 infnninfOLD 7186 nninfwlpoimlemg 7236 exmidontri2or 7305 frec2uzf1od 10480 hashinfuni 10851 setsresg 12659 setsslid 12672 strle1g 12727 cncnpi 14407 hmeores 14494 limcimolemlt 14843 recnprss 14866 0nninf 15564 nninfall 15569 |
Copyright terms: Public domain | W3C validator |