| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqimss | Unicode version | ||
| Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| eqimss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss 3216 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: eqimss2 3256 uneqin 3432 ssprsseq 3806 sssnr 3807 sssnm 3808 ssprr 3810 sstpr 3811 snsspw 3818 pwpwssunieq 4030 elpwuni 4031 disjeq2 4039 disjeq1 4042 pwne 4220 pwssunim 4349 poeq2 4365 seeq1 4404 seeq2 4405 trsucss 4488 onsucelsucr 4574 xp11m 5140 funeq 5310 fnresdm 5404 fssxp 5463 ffdm 5466 fcoi1 5478 fof 5520 dff1o2 5549 fvmptss2 5677 fvmptssdm 5687 fprg 5790 dff1o6 5868 tposeq 6356 el2oss1o 6552 nntri1 6605 nntri2or2 6607 nnsseleq 6610 infnninf 7252 infnninfOLD 7253 nninfwlpoimlemg 7303 exmidontri2or 7389 frec2uzf1od 10588 hashinfuni 10959 setsresg 12985 setsslid 12998 strle1g 13053 cncnpi 14815 hmeores 14902 limcimolemlt 15251 recnprss 15274 plycoeid3 15344 0nninf 16143 nninfall 16148 |
| Copyright terms: Public domain | W3C validator |