ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqimss Unicode version

Theorem eqimss 3237
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
eqimss  |-  ( A  =  B  ->  A  C_  B )

Proof of Theorem eqimss
StepHypRef Expression
1 eqss 3198 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
21simplbi 274 1  |-  ( A  =  B  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  eqimss2  3238  uneqin  3414  sssnr  3783  sssnm  3784  ssprr  3786  sstpr  3787  snsspw  3794  pwpwssunieq  4005  elpwuni  4006  disjeq2  4014  disjeq1  4017  pwne  4193  pwssunim  4319  poeq2  4335  seeq1  4374  seeq2  4375  trsucss  4458  onsucelsucr  4544  xp11m  5108  funeq  5278  fnresdm  5367  fssxp  5425  ffdm  5428  fcoi1  5438  fof  5480  dff1o2  5509  fvmptss2  5636  fvmptssdm  5646  fprg  5745  dff1o6  5823  tposeq  6305  el2oss1o  6501  nntri1  6554  nntri2or2  6556  nnsseleq  6559  infnninf  7190  infnninfOLD  7191  nninfwlpoimlemg  7241  exmidontri2or  7310  frec2uzf1od  10498  hashinfuni  10869  setsresg  12716  setsslid  12729  strle1g  12784  cncnpi  14464  hmeores  14551  limcimolemlt  14900  recnprss  14923  plycoeid3  14993  0nninf  15648  nninfall  15653
  Copyright terms: Public domain W3C validator