Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqimss | Unicode version |
Description: Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.) |
Ref | Expression |
---|---|
eqimss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3139 | . 2 | |
2 | 1 | simplbi 272 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-in 3104 df-ss 3111 |
This theorem is referenced by: eqimss2 3179 uneqin 3354 sssnr 3712 sssnm 3713 ssprr 3715 sstpr 3716 snsspw 3723 pwpwssunieq 3933 elpwuni 3934 disjeq2 3942 disjeq1 3945 pwne 4116 pwssunim 4239 poeq2 4255 seeq1 4294 seeq2 4295 trsucss 4378 onsucelsucr 4461 xp11m 5017 funeq 5183 fnresdm 5272 fssxp 5330 ffdm 5333 fcoi1 5343 fof 5385 dff1o2 5412 fvmptss2 5536 fvmptssdm 5545 fprg 5643 dff1o6 5717 tposeq 6184 nntri1 6432 nntri2or2 6434 nnsseleq 6437 infnninf 7052 infnninfOLD 7053 exmidontri2or 7157 frec2uzf1od 10283 hashinfuni 10628 setsresg 12167 setsslid 12179 strle1g 12219 cncnpi 12567 hmeores 12654 limcimolemlt 12972 recnprss 12995 el2oss1o 13503 0nninf 13515 nninfall 13522 |
Copyright terms: Public domain | W3C validator |