Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > poeq1 | Unicode version |
Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.) |
Ref | Expression |
---|---|
poeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 3991 | . . . . . 6 | |
2 | 1 | notbid 662 | . . . . 5 |
3 | breq 3991 | . . . . . . 7 | |
4 | breq 3991 | . . . . . . 7 | |
5 | 3, 4 | anbi12d 470 | . . . . . 6 |
6 | breq 3991 | . . . . . 6 | |
7 | 5, 6 | imbi12d 233 | . . . . 5 |
8 | 2, 7 | anbi12d 470 | . . . 4 |
9 | 8 | ralbidv 2470 | . . 3 |
10 | 9 | 2ralbidv 2494 | . 2 |
11 | df-po 4281 | . 2 | |
12 | df-po 4281 | . 2 | |
13 | 10, 11, 12 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wral 2448 class class class wbr 3989 wpo 4279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-cleq 2163 df-clel 2166 df-ral 2453 df-br 3990 df-po 4281 |
This theorem is referenced by: soeq1 4300 |
Copyright terms: Public domain | W3C validator |