ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prneli Unicode version

Theorem prneli 3614
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using 
e/. (Contributed by David A. Wheeler, 10-May-2015.)
Hypotheses
Ref Expression
prneli.1  |-  A  =/= 
B
prneli.2  |-  A  =/= 
C
Assertion
Ref Expression
prneli  |-  A  e/  { B ,  C }

Proof of Theorem prneli
StepHypRef Expression
1 prneli.1 . . 3  |-  A  =/= 
B
2 prneli.2 . . 3  |-  A  =/= 
C
31, 2nelpri 3613 . 2  |-  -.  A  e.  { B ,  C }
43nelir 2443 1  |-  A  e/  { B ,  C }
Colors of variables: wff set class
Syntax hints:    =/= wne 2345    e/ wnel 2440   {cpr 3590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator