ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prneli Unicode version

Theorem prneli 3601
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using 
e/. (Contributed by David A. Wheeler, 10-May-2015.)
Hypotheses
Ref Expression
prneli.1  |-  A  =/= 
B
prneli.2  |-  A  =/= 
C
Assertion
Ref Expression
prneli  |-  A  e/  { B ,  C }

Proof of Theorem prneli
StepHypRef Expression
1 prneli.1 . . 3  |-  A  =/= 
B
2 prneli.2 . . 3  |-  A  =/= 
C
31, 2nelpri 3600 . 2  |-  -.  A  e.  { B ,  C }
43nelir 2434 1  |-  A  e/  { B ,  C }
Colors of variables: wff set class
Syntax hints:    =/= wne 2336    e/ wnel 2431   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator