ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prneli Unicode version

Theorem prneli 3691
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using 
e/. (Contributed by David A. Wheeler, 10-May-2015.)
Hypotheses
Ref Expression
prneli.1  |-  A  =/= 
B
prneli.2  |-  A  =/= 
C
Assertion
Ref Expression
prneli  |-  A  e/  { B ,  C }

Proof of Theorem prneli
StepHypRef Expression
1 prneli.1 . . 3  |-  A  =/= 
B
2 prneli.2 . . 3  |-  A  =/= 
C
31, 2nelpri 3690 . 2  |-  -.  A  e.  { B ,  C }
43nelir 2498 1  |-  A  e/  { B ,  C }
Colors of variables: wff set class
Syntax hints:    =/= wne 2400    e/ wnel 2495   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator