Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prneli | GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
prneli.1 | ⊢ 𝐴 ≠ 𝐵 |
prneli.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
prneli | ⊢ 𝐴 ∉ {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prneli.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | prneli.2 | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
3 | 1, 2 | nelpri 3600 | . 2 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
4 | 3 | nelir 2434 | 1 ⊢ 𝐴 ∉ {𝐵, 𝐶} |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2336 ∉ wnel 2431 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |