![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prneli | GIF version |
Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
prneli.1 | ⊢ 𝐴 ≠ 𝐵 |
prneli.2 | ⊢ 𝐴 ≠ 𝐶 |
Ref | Expression |
---|---|
prneli | ⊢ 𝐴 ∉ {𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prneli.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
2 | prneli.2 | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
3 | 1, 2 | nelpri 3631 | . 2 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
4 | 3 | nelir 2458 | 1 ⊢ 𝐴 ∉ {𝐵, 𝐶} |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2360 ∉ wnel 2455 {cpr 3608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-v 2754 df-un 3148 df-sn 3613 df-pr 3614 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |