| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prneli | GIF version | ||
| Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair, using ∉. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| prneli.1 | ⊢ 𝐴 ≠ 𝐵 |
| prneli.2 | ⊢ 𝐴 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| prneli | ⊢ 𝐴 ∉ {𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prneli.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | prneli.2 | . . 3 ⊢ 𝐴 ≠ 𝐶 | |
| 3 | 1, 2 | nelpri 3657 | . 2 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| 4 | 3 | nelir 2474 | 1 ⊢ 𝐴 ∉ {𝐵, 𝐶} |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2376 ∉ wnel 2471 {cpr 3634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |