ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prprc2 Unicode version

Theorem prprc2 3536
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
prprc2  |-  ( -.  B  e.  _V  ->  { A ,  B }  =  { A } )

Proof of Theorem prprc2
StepHypRef Expression
1 prcom 3503 . 2  |-  { A ,  B }  =  { B ,  A }
2 prprc1 3535 . 2  |-  ( -.  B  e.  _V  ->  { B ,  A }  =  { A } )
31, 2syl5eq 2129 1  |-  ( -.  B  e.  _V  ->  { A ,  B }  =  { A } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1287    e. wcel 1436   _Vcvv 2615   {csn 3431   {cpr 3432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-dif 2990  df-un 2992  df-nul 3276  df-sn 3437  df-pr 3438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator