ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prprc Unicode version

Theorem prprc 3686
Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
prprc  |-  ( ( -.  A  e.  _V  /\ 
-.  B  e.  _V )  ->  { A ,  B }  =  (/) )

Proof of Theorem prprc
StepHypRef Expression
1 prprc1 3684 . 2  |-  ( -.  A  e.  _V  ->  { A ,  B }  =  { B } )
2 snprc 3641 . . 3  |-  ( -.  B  e.  _V  <->  { B }  =  (/) )
32biimpi 119 . 2  |-  ( -.  B  e.  _V  ->  { B }  =  (/) )
41, 3sylan9eq 2219 1  |-  ( ( -.  A  e.  _V  /\ 
-.  B  e.  _V )  ->  { A ,  B }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   (/)c0 3409   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410  df-sn 3582  df-pr 3583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator