| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcom | Unicode version | ||
| Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3307 |
. 2
| |
| 2 | df-pr 3629 |
. 2
| |
| 3 | df-pr 3629 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-pr 3629 |
| This theorem is referenced by: preq2 3700 tpcoma 3716 tpidm23 3723 prid2g 3727 prid2 3729 prprc2 3731 difprsn2 3762 preqr2g 3797 preqr2 3799 preq12b 3800 fvpr2 5767 fvpr2g 5769 en2other2 7263 maxcom 11368 mincom 11394 xrmax2sup 11419 xrmaxltsup 11423 xrmaxadd 11426 xrbdtri 11441 lspprid2 13968 qtopbasss 14757 |
| Copyright terms: Public domain | W3C validator |