| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcom | Unicode version | ||
| Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3325 |
. 2
| |
| 2 | df-pr 3650 |
. 2
| |
| 3 | df-pr 3650 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4i 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-pr 3650 |
| This theorem is referenced by: preq2 3721 tpcoma 3737 tpidm23 3744 prid2g 3748 prid2 3750 prprc2 3752 difprsn2 3784 ssprsseq 3806 preqr2g 3821 preqr2 3823 preq12b 3824 elpr2elpr 3830 fvpr2 5812 fvpr2g 5814 pr2cv2 7330 en2other2 7335 maxcom 11629 mincom 11655 xrmax2sup 11680 xrmaxltsup 11684 xrmaxadd 11687 xrbdtri 11702 lspprid2 14289 qtopbasss 15108 |
| Copyright terms: Public domain | W3C validator |