| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcom | Unicode version | ||
| Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3348 |
. 2
| |
| 2 | df-pr 3673 |
. 2
| |
| 3 | df-pr 3673 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4i 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-pr 3673 |
| This theorem is referenced by: preq2 3744 tpcoma 3760 tpidm23 3767 prid2g 3771 prid2 3773 prprc2 3776 difprsn2 3808 ssprsseq 3830 preqr2g 3845 preqr2 3847 preq12b 3848 elpr2elpr 3854 fvpr2 5844 fvpr2g 5846 pr2cv2 7369 en2other2 7374 maxcom 11714 mincom 11740 xrmax2sup 11765 xrmaxltsup 11769 xrmaxadd 11772 xrbdtri 11787 lspprid2 14376 qtopbasss 15195 uhgr2edg 16004 usgredg4 16013 usgredg2vlem1 16020 usgredg2vlem2 16021 |
| Copyright terms: Public domain | W3C validator |