| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prcom | Unicode version | ||
| Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 3317 |
. 2
| |
| 2 | df-pr 3640 |
. 2
| |
| 3 | df-pr 3640 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4i 2236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-pr 3640 |
| This theorem is referenced by: preq2 3711 tpcoma 3727 tpidm23 3734 prid2g 3738 prid2 3740 prprc2 3742 difprsn2 3773 preqr2g 3808 preqr2 3810 preq12b 3811 fvpr2 5789 fvpr2g 5791 en2other2 7304 maxcom 11514 mincom 11540 xrmax2sup 11565 xrmaxltsup 11569 xrmaxadd 11572 xrbdtri 11587 lspprid2 14174 qtopbasss 14993 |
| Copyright terms: Public domain | W3C validator |