ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcom Unicode version

Theorem prcom 3742
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prcom  |-  { A ,  B }  =  { B ,  A }

Proof of Theorem prcom
StepHypRef Expression
1 uncom 3348 . 2  |-  ( { A }  u.  { B } )  =  ( { B }  u.  { A } )
2 df-pr 3673 . 2  |-  { A ,  B }  =  ( { A }  u.  { B } )
3 df-pr 3673 . 2  |-  { B ,  A }  =  ( { B }  u.  { A } )
41, 2, 33eqtr4i 2260 1  |-  { A ,  B }  =  { B ,  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1395    u. cun 3195   {csn 3666   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-pr 3673
This theorem is referenced by:  preq2  3744  tpcoma  3760  tpidm23  3767  prid2g  3771  prid2  3773  prprc2  3776  difprsn2  3808  ssprsseq  3830  preqr2g  3845  preqr2  3847  preq12b  3848  elpr2elpr  3854  fvpr2  5844  fvpr2g  5846  pr2cv2  7369  en2other2  7374  maxcom  11714  mincom  11740  xrmax2sup  11765  xrmaxltsup  11769  xrmaxadd  11772  xrbdtri  11787  lspprid2  14376  qtopbasss  15195  uhgr2edg  16004  usgredg4  16013  usgredg2vlem1  16020  usgredg2vlem2  16021
  Copyright terms: Public domain W3C validator