ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prcom Unicode version

Theorem prcom 3652
Description: Commutative law for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
prcom  |-  { A ,  B }  =  { B ,  A }

Proof of Theorem prcom
StepHypRef Expression
1 uncom 3266 . 2  |-  ( { A }  u.  { B } )  =  ( { B }  u.  { A } )
2 df-pr 3583 . 2  |-  { A ,  B }  =  ( { A }  u.  { B } )
3 df-pr 3583 . 2  |-  { B ,  A }  =  ( { B }  u.  { A } )
41, 2, 33eqtr4i 2196 1  |-  { A ,  B }  =  { B ,  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1343    u. cun 3114   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-pr 3583
This theorem is referenced by:  preq2  3654  tpcoma  3670  tpidm23  3677  prid2g  3681  prid2  3683  prprc2  3685  difprsn2  3713  preqr2g  3747  preqr2  3749  preq12b  3750  fvpr2  5690  fvpr2g  5692  en2other2  7152  maxcom  11145  mincom  11170  xrmax2sup  11195  xrmaxltsup  11199  xrmaxadd  11202  xrbdtri  11217  qtopbasss  13161
  Copyright terms: Public domain W3C validator