ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtrid Unicode version

Theorem eqtrid 2210
Description: An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.)
Hypotheses
Ref Expression
eqtrid.1  |-  A  =  B
eqtrid.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
eqtrid  |-  ( ph  ->  A  =  C )

Proof of Theorem eqtrid
StepHypRef Expression
1 eqtrid.1 . . 3  |-  A  =  B
21a1i 9 . 2  |-  ( ph  ->  A  =  B )
3 eqtrid.2 . 2  |-  ( ph  ->  B  =  C )
42, 3eqtrd 2198 1  |-  ( ph  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158
This theorem is referenced by:  mgm1  12601  grpidvalg  12604
  Copyright terms: Public domain W3C validator