Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.23t | GIF version |
Description: Closed theorem form of r19.23 2574. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
r19.23t | ⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.23t 1665 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓))) | |
2 | df-ral 2449 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
3 | impexp 261 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ↔ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) | |
4 | 3 | albii 1458 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 → 𝜓))) |
5 | 2, 4 | bitr4i 186 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) |
6 | df-rex 2450 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | 6 | imbi1i 237 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓)) |
8 | 1, 5, 7 | 3bitr4g 222 | 1 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 → 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-ral 2449 df-rex 2450 |
This theorem is referenced by: r19.23 2574 rexlimd2 2581 |
Copyright terms: Public domain | W3C validator |