ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.23t GIF version

Theorem r19.23t 2601
Description: Closed theorem form of r19.23 2602. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
r19.23t (Ⅎ𝑥𝜓 → (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))

Proof of Theorem r19.23t
StepHypRef Expression
1 19.23t 1688 . 2 (Ⅎ𝑥𝜓 → (∀𝑥((𝑥𝐴𝜑) → 𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) → 𝜓)))
2 df-ral 2477 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
3 impexp 263 . . . 4 (((𝑥𝐴𝜑) → 𝜓) ↔ (𝑥𝐴 → (𝜑𝜓)))
43albii 1481 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
52, 4bitr4i 187 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥((𝑥𝐴𝜑) → 𝜓))
6 df-rex 2478 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
76imbi1i 238 . 2 ((∃𝑥𝐴 𝜑𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) → 𝜓))
81, 5, 73bitr4g 223 1 (Ⅎ𝑥𝜓 → (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wnf 1471  wex 1503  wcel 2164  wral 2472  wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477  df-rex 2478
This theorem is referenced by:  r19.23  2602  rexlimd2  2609
  Copyright terms: Public domain W3C validator