Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidontriimlem1 | Unicode version |
Description: Lemma for exmidontriim 7181. A variation of r19.30dc 2613. (Contributed by Jim Kingdon, 12-Aug-2024.) |
Ref | Expression |
---|---|
exmidontriimlem1 | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3orass 971 | . . . . . . . 8 | |
2 | 1 | biimpi 119 | . . . . . . 7 |
3 | 2 | orcomd 719 | . . . . . 6 |
4 | 3 | ralimi 2529 | . . . . 5 |
5 | exmidexmid 4175 | . . . . 5 EXMID DECID | |
6 | r19.30dc 2613 | . . . . 5 DECID | |
7 | 4, 5, 6 | syl2an 287 | . . . 4 EXMID |
8 | 7 | orcomd 719 | . . 3 EXMID |
9 | simpr 109 | . . . . . 6 EXMID | |
10 | simplr 520 | . . . . . 6 EXMID EXMID | |
11 | orcom 718 | . . . . . . . . . 10 | |
12 | 11 | ralbii 2472 | . . . . . . . . 9 |
13 | 12 | biimpi 119 | . . . . . . . 8 |
14 | exmidexmid 4175 | . . . . . . . 8 EXMID DECID | |
15 | r19.30dc 2613 | . . . . . . . 8 DECID | |
16 | 13, 14, 15 | syl2an 287 | . . . . . . 7 EXMID |
17 | 16 | orcomd 719 | . . . . . 6 EXMID |
18 | 9, 10, 17 | syl2anc 409 | . . . . 5 EXMID |
19 | 18 | ex 114 | . . . 4 EXMID |
20 | 19 | orim2d 778 | . . 3 EXMID |
21 | 8, 20 | mpd 13 | . 2 EXMID |
22 | 3orass 971 | . 2 | |
23 | 21, 22 | sylibr 133 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 DECID wdc 824 w3o 967 wral 2444 wrex 2445 EXMIDwem 4173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-exmid 4174 |
This theorem is referenced by: exmidontriimlem2 7178 |
Copyright terms: Public domain | W3C validator |