ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.44mv Unicode version

Theorem r19.44mv 3503
Description: Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.44mv  |-  ( E. y  y  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  ps ) ) )
Distinct variable groups:    x, A    y, A    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)

Proof of Theorem r19.44mv
StepHypRef Expression
1 r19.43 2624 . 2  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )
2 r19.9rmv 3500 . . 3  |-  ( E. y  y  e.  A  ->  ( ps  <->  E. x  e.  A  ps )
)
32orbi2d 780 . 2  |-  ( E. y  y  e.  A  ->  ( ( E. x  e.  A  ph  \/  ps ) 
<->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) ) )
41, 3bitr4id 198 1  |-  ( E. y  y  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698   E.wex 1480    e. wcel 2136   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161  df-rex 2450
This theorem is referenced by:  frecabcl  6367
  Copyright terms: Public domain W3C validator