ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.44mv Unicode version

Theorem r19.44mv 3586
Description: Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.44mv  |-  ( E. y  y  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  ps ) ) )
Distinct variable groups:    x, A    y, A    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)

Proof of Theorem r19.44mv
StepHypRef Expression
1 r19.43 2689 . 2  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )
2 r19.9rmv 3583 . . 3  |-  ( E. y  y  e.  A  ->  ( ps  <->  E. x  e.  A  ps )
)
32orbi2d 795 . 2  |-  ( E. y  y  e.  A  ->  ( ( E. x  e.  A  ph  \/  ps ) 
<->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) ) )
41, 3bitr4id 199 1  |-  ( E. y  y  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713   E.wex 1538    e. wcel 2200   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225  df-rex 2514
This theorem is referenced by:  frecabcl  6545
  Copyright terms: Public domain W3C validator