ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.43 Unicode version

Theorem r19.43 2623
Description: Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof rewritten by Jim Kingdon, 5-Jun-2018.)
Assertion
Ref Expression
r19.43  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )

Proof of Theorem r19.43
StepHypRef Expression
1 df-rex 2449 . . . 4  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  E. x ( x  e.  A  /\  ( ph  \/  ps ) ) )
2 andi 808 . . . . 5  |-  ( ( x  e.  A  /\  ( ph  \/  ps )
)  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  A  /\  ps )
) )
32exbii 1593 . . . 4  |-  ( E. x ( x  e.  A  /\  ( ph  \/  ps ) )  <->  E. x
( ( x  e.  A  /\  ph )  \/  ( x  e.  A  /\  ps ) ) )
41, 3bitri 183 . . 3  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  E. x ( ( x  e.  A  /\  ph )  \/  ( x  e.  A  /\  ps )
) )
5 19.43 1616 . . 3  |-  ( E. x ( ( x  e.  A  /\  ph )  \/  ( x  e.  A  /\  ps )
)  <->  ( E. x
( x  e.  A  /\  ph )  \/  E. x ( x  e.  A  /\  ps )
) )
64, 5bitri 183 . 2  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x ( x  e.  A  /\  ph )  \/  E. x
( x  e.  A  /\  ps ) ) )
7 df-rex 2449 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
8 df-rex 2449 . . 3  |-  ( E. x  e.  A  ps  <->  E. x ( x  e.  A  /\  ps )
)
97, 8orbi12i 754 . 2  |-  ( ( E. x  e.  A  ph  \/  E. x  e.  A  ps )  <->  ( E. x ( x  e.  A  /\  ph )  \/  E. x ( x  e.  A  /\  ps ) ) )
106, 9bitr4i 186 1  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 698   E.wex 1480    e. wcel 2136   E.wrex 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-rex 2449
This theorem is referenced by:  r19.44av  2624  r19.45av  2625  r19.45mv  3501  r19.44mv  3502  iunun  3943  ltexprlemloc  7544  pythagtriplem2  12194  pythagtrip  12211
  Copyright terms: Public domain W3C validator