ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.45mv Unicode version

Theorem r19.45mv 3488
Description: Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.45mv  |-  ( E. x  x  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  ( ph  \/  E. x  e.  A  ps ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem r19.45mv
StepHypRef Expression
1 r19.43 2615 . 2  |-  ( E. x  e.  A  (
ph  \/  ps )  <->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) )
2 r19.9rmv 3486 . . 3  |-  ( E. x  x  e.  A  ->  ( ph  <->  E. x  e.  A  ph ) )
32orbi1d 781 . 2  |-  ( E. x  x  e.  A  ->  ( ( ph  \/  E. x  e.  A  ps ) 
<->  ( E. x  e.  A  ph  \/  E. x  e.  A  ps ) ) )
41, 3bitr4id 198 1  |-  ( E. x  x  e.  A  ->  ( E. x  e.  A  ( ph  \/  ps )  <->  ( ph  \/  E. x  e.  A  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698   E.wex 1472    e. wcel 2128   E.wrex 2436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-cleq 2150  df-clel 2153  df-rex 2441
This theorem is referenced by:  ltexprlemloc  7530
  Copyright terms: Public domain W3C validator