![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.44mv | GIF version |
Description: Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.44mv | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.9rmv 3393 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | |
2 | 1 | orbi2d 742 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ((∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) |
3 | r19.43 2539 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | |
4 | 2, 3 | syl6rbbr 198 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 667 ∃wex 1433 ∈ wcel 1445 ∃wrex 2371 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-cleq 2088 df-clel 2091 df-rex 2376 |
This theorem is referenced by: frecabcl 6202 |
Copyright terms: Public domain | W3C validator |