ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.44mv GIF version

Theorem r19.44mv 3461
Description: Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.44mv (∃𝑦 𝑦𝐴 → (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem r19.44mv
StepHypRef Expression
1 r19.9rmv 3458 . . 3 (∃𝑦 𝑦𝐴 → (𝜓 ↔ ∃𝑥𝐴 𝜓))
21orbi2d 780 . 2 (∃𝑦 𝑦𝐴 → ((∃𝑥𝐴 𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓)))
3 r19.43 2592 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
42, 3syl6rbbr 198 1 (∃𝑦 𝑦𝐴 → (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 698  wex 1469  wcel 1481  wrex 2418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-cleq 2133  df-clel 2136  df-rex 2423
This theorem is referenced by:  frecabcl  6303
  Copyright terms: Public domain W3C validator