Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.44mv | GIF version |
Description: Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
r19.44mv | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.43 2628 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | |
2 | r19.9rmv 3506 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | |
3 | 2 | orbi2d 785 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ((∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) |
4 | 1, 3 | bitr4id 198 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 703 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 df-rex 2454 |
This theorem is referenced by: frecabcl 6378 |
Copyright terms: Public domain | W3C validator |