| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.44mv | GIF version | ||
| Description: Restricted version of Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| r19.44mv | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.43 2664 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | |
| 2 | r19.9rmv 3552 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜓)) | |
| 3 | 2 | orbi2d 792 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ((∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓))) |
| 4 | 1, 3 | bitr4id 199 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 ∃wex 1515 ∈ wcel 2176 ∃wrex 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-rex 2490 |
| This theorem is referenced by: frecabcl 6485 |
| Copyright terms: Public domain | W3C validator |