ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rab2ex Unicode version

Theorem rab2ex 4176
Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
rab2ex.1  |-  B  =  { y  e.  A  |  ps }
rab2ex.2  |-  A  e. 
_V
Assertion
Ref Expression
rab2ex  |-  { x  e.  B  |  ph }  e.  _V
Distinct variable groups:    x, B    y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x)    B( y)

Proof of Theorem rab2ex
StepHypRef Expression
1 rab2ex.1 . . 3  |-  B  =  { y  e.  A  |  ps }
2 rab2ex.2 . . 3  |-  A  e. 
_V
31, 2rabex2 4175 . 2  |-  B  e. 
_V
43rabex 4173 1  |-  { x  e.  B  |  ph }  e.  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   {crab 2476   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-in 3159  df-ss 3166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator