HomeHome Intuitionistic Logic Explorer
Theorem List (p. 43 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4201-4300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsspwb 4201 Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
 |-  ( A  C_  B  <->  ~P A  C_  ~P B )
 
Theoremunipw 4202 A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
 |- 
 U. ~P A  =  A
 
Theorempwel 4203 Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
 |-  ( A  e.  B  ->  ~P A  e.  ~P ~P U. B )
 
Theorempwtr 4204 A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
 |-  ( Tr  A  <->  Tr  ~P A )
 
Theoremssextss 4205* An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
 |-  ( A  C_  B  <->  A. x ( x  C_  A  ->  x  C_  B ) )
 
Theoremssext 4206* An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.)
 |-  ( A  =  B  <->  A. x ( x  C_  A 
 <->  x  C_  B )
 )
 
Theoremnssssr 4207* Negation of subclass relationship. Compare nssr 3207. (Contributed by Jim Kingdon, 17-Sep-2018.)
 |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A  C_  B )
 
Theorempweqb 4208 Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
 |-  ( A  =  B  <->  ~P A  =  ~P B )
 
Theoremintid 4209* The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
 |-  A  e.  _V   =>    |-  |^| { x  |  A  e.  x }  =  { A }
 
Theoremeuabex 4210 The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
 |-  ( E! x ph  ->  { x  |  ph }  e.  _V )
 
Theoremmss 4211* An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.)
 |-  ( E. y  y  e.  A  ->  E. x ( x  C_  A  /\  E. z  z  e.  x ) )
 
Theoremexss 4212* Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.)
 |-  ( E. x  e.  A  ph  ->  E. y
 ( y  C_  A  /\  E. x  e.  y  ph ) )
 
Theoremopexg 4213 An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  <. A ,  B >.  e.  _V )
 
Theoremopex 4214 An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 <. A ,  B >.  e. 
 _V
 
Theoremotexg 4215 An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.)
 |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W ) 
 ->  <. A ,  B ,  C >.  e.  _V )
 
Theoremelop 4216 An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  e.  <. B ,  C >. 
 <->  ( A  =  { B }  \/  A  =  { B ,  C } ) )
 
Theoremopi1 4217 One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { A }  e.  <. A ,  B >.
 
Theoremopi2 4218 One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { A ,  B }  e.  <. A ,  B >.
 
2.3.4  Ordered pair theorem
 
Theoremopm 4219* An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.)
 |-  ( E. x  x  e.  <. A ,  B >.  <-> 
 ( A  e.  _V  /\  B  e.  _V )
 )
 
Theoremopnzi 4220 An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4219). (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 <. A ,  B >.  =/=  (/)
 
Theoremopth1 4221 Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  =  <. C ,  D >.  ->  A  =  C )
 
Theoremopth 4222 The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that  C and  D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
 ( A  =  C  /\  B  =  D ) )
 
Theoremopthg 4223 Ordered pair theorem.  C and  D are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >. 
 <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremopthg2 4224 Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( C  e.  V  /\  D  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >. 
 <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremopth2 4225 Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
 |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
 ( A  =  C  /\  B  =  D ) )
 
Theoremotth2 4226 Ordered triple theorem, with triple express with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  R  e.  _V   =>    |-  ( <.
 <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )
 
Theoremotth 4227 Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  R  e.  _V   =>    |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S )
 )
 
Theoremeqvinop 4228* A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  =  <. B ,  C >.  <->  E. x E. y
 ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. ) )
 
Theoremcopsexg 4229* Substitution of class  A for ordered pair  <. x ,  y
>.. (Contributed by NM, 27-Dec-1996.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( A  =  <. x ,  y >.  ->  ( ph 
 <-> 
 E. x E. y
 ( A  =  <. x ,  y >.  /\  ph )
 ) )
 
Theoremcopsex2t 4230* Closed theorem form of copsex2g 4231. (Contributed by NM, 17-Feb-2013.)
 |-  ( ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )  /\  ( A  e.  V  /\  B  e.  W ) )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph )  <->  ps ) )
 
Theoremcopsex2g 4231* Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y (
 <. A ,  B >.  = 
 <. x ,  y >.  /\  ph )  <->  ps ) )
 
Theoremcopsex4g 4232* An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.)
 |-  ( ( ( x  =  A  /\  y  =  B )  /\  (
 z  =  C  /\  w  =  D )
 )  ->  ( ph  <->  ps ) )   =>    |-  ( ( ( A  e.  R  /\  B  e.  S )  /\  ( C  e.  R  /\  D  e.  S )
 )  ->  ( E. x E. y E. z E. w ( ( <. A ,  B >.  =  <. x ,  y >.  /\  <. C ,  D >.  =  <. z ,  w >. )  /\  ph )  <->  ps ) )
 
Theorem0nelop 4233 A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 -.  (/)  e.  <. A ,  B >.
 
Theoremopeqex 4234 Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
 |-  ( <. A ,  B >.  =  <. C ,  D >.  ->  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( C  e.  _V 
 /\  D  e.  _V ) ) )
 
Theoremopcom 4235 An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  =  <. B ,  A >.  <->  A  =  B )
 
Theoremmoop2 4236* "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  B  e.  _V   =>    |-  E* x  A  =  <. B ,  x >.
 
Theoremopeqsn 4237 Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( <. A ,  B >.  =  { C }  <->  ( A  =  B  /\  C  =  { A } ) )
 
Theoremopeqpr 4238 Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( <. A ,  B >.  =  { C ,  D }  <->  ( ( C  =  { A }  /\  D  =  { A ,  B } )  \/  ( C  =  { A ,  B }  /\  D  =  { A } ) ) )
 
Theoremeuotd 4239* Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  C  e.  _V )   &    |-  ( ph  ->  ( ps 
 <->  ( a  =  A  /\  b  =  B  /\  c  =  C ) ) )   =>    |-  ( ph  ->  E! x E. a E. b E. c ( x  =  <. a ,  b ,  c >.  /\  ps )
 )
 
Theoremuniop 4240 The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 U. <. A ,  B >.  =  { A ,  B }
 
Theoremuniopel 4241 Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  C  ->  U. <. A ,  B >.  e.  U. C )
 
2.3.5  Ordered-pair class abstractions (cont.)
 
Theoremopabid 4242 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( <. x ,  y >.  e.  { <. x ,  y >.  |  ph }  <->  ph )
 
Theoremelopab 4243* Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.)
 |-  ( A  e.  { <. x ,  y >.  | 
 ph }  <->  E. x E. y
 ( A  =  <. x ,  y >.  /\  ph )
 )
 
TheoremopelopabsbALT 4244* The law of concretion in terms of substitutions. Less general than opelopabsb 4245, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( <. z ,  w >.  e.  { <. x ,  y >.  |  ph }  <->  [ w  /  y ] [ z  /  x ] ph )
 
Theoremopelopabsb 4245* The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.)
 |-  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  [. A  /  x ].
 [. B  /  y ]. ph )
 
Theorembrabsb 4246* The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.)
 |-  R  =  { <. x ,  y >.  |  ph }   =>    |-  ( A R B  <->  [. A  /  x ].
 [. B  /  y ]. ph )
 
Theoremopelopabt 4247* Closed theorem form of opelopab 4256. (Contributed by NM, 19-Feb-2013.)
 |-  ( ( A. x A. y ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x A. y ( y  =  B  ->  ( ps  <->  ch ) )  /\  ( A  e.  V  /\  B  e.  W ) )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ch ) )
 
Theoremopelopabga 4248* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e. 
 { <. x ,  y >.  |  ph }  <->  ps ) )
 
Theorembrabga 4249* The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   &    |-  R  =  { <. x ,  y >.  |  ph }   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A R B  <->  ps ) )
 
Theoremopelopab2a 4250* Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e. 
 { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) } 
 <->  ps ) )
 
Theoremopelopaba 4251* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ps )
 
Theorembraba 4252* The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   &    |-  R  =  { <. x ,  y >.  |  ph }   =>    |-  ( A R B 
 <->  ps )
 
Theoremopelopabg 4253* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e. 
 { <. x ,  y >.  |  ph }  <->  ch ) )
 
Theorembrabg 4254* The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  R  =  { <. x ,  y >.  |  ph }   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ch ) )
 
Theoremopelopab2 4255* Ordered pair membership in an ordered pair class abstraction. (Contributed by NM, 14-Oct-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e. 
 { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) } 
 <->  ch ) )
 
Theoremopelopab 4256* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 16-May-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ch )
 
Theorembrab 4257* The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  R  =  { <. x ,  y >.  | 
 ph }   =>    |-  ( A R B  <->  ch )
 
Theoremopelopabaf 4258* The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4256 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |- 
 F/ x ps   &    |-  F/ y ps   &    |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ps )
 
Theoremopelopabf 4259* The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4256 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008.)
 |- 
 F/ x ps   &    |-  F/ y ch   &    |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ch )
 
Theoremssopab2 4260 Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.)
 |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  {
 <. x ,  y >.  |  ps } )
 
Theoremssopab2b 4261 Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |-  ( { <. x ,  y >.  |  ph }  C_  {
 <. x ,  y >.  |  ps }  <->  A. x A. y
 ( ph  ->  ps )
 )
 
Theoremssopab2i 4262 Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.)
 |-  ( ph  ->  ps )   =>    |-  { <. x ,  y >.  |  ph } 
 C_  { <. x ,  y >.  |  ps }
 
Theoremssopab2dv 4263* Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ch } )
 
Theoremeqopab2b 4264 Equivalence of ordered pair abstraction equality and biconditional. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  A. x A. y
 ( ph  <->  ps ) )
 
Theoremopabm 4265* Inhabited ordered pair class abstraction. (Contributed by Jim Kingdon, 29-Sep-2018.)
 |-  ( E. z  z  e.  { <. x ,  y >.  |  ph }  <->  E. x E. y ph )
 
Theoremiunopab 4266* Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
 |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  E. z  e.  A  ph }
 
2.3.6  Power class of union and intersection
 
Theorempwin 4267 The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
 |- 
 ~P ( A  i^i  B )  =  ( ~P A  i^i  ~P B )
 
Theorempwunss 4268 The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
 |-  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B )
 
Theorempwssunim 4269 The power class of the union of two classes is a subset of the union of their power classes, if one class is a subclass of the other. One direction of Exercise 4.12(l) of [Mendelson] p. 235. (Contributed by Jim Kingdon, 30-Sep-2018.)
 |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B ) )
 
Theorempwundifss 4270 Break up the power class of a union into a union of smaller classes. (Contributed by Jim Kingdon, 30-Sep-2018.)
 |-  ( ( ~P ( A  u.  B )  \  ~P A )  u.  ~P A )  C_  ~P ( A  u.  B )
 
Theorempwunim 4271 The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by Jim Kingdon, 30-Sep-2018.)
 |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B )  =  ( ~P A  u.  ~P B ) )
 
2.3.7  Epsilon and identity relations
 
Syntaxcep 4272 Extend class notation to include the epsilon relation.
 class  _E
 
Syntaxcid 4273 Extend the definition of a class to include identity relation.
 class  _I
 
Definitiondf-eprel 4274* Define the epsilon relation. Similar to Definition 6.22 of [TakeutiZaring] p. 30. The epsilon relation and set membership are the same, that is,  ( A  _E  B  <->  A  e.  B ) when  B is a set by epelg 4275. Thus, 5  _E { 1 , 5 }. (Contributed by NM, 13-Aug-1995.)
 |- 
 _E  =  { <. x ,  y >.  |  x  e.  y }
 
Theoremepelg 4275 The epsilon relation and membership are the same. General version of epel 4277. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( B  e.  V  ->  ( A  _E  B  <->  A  e.  B ) )
 
Theoremepelc 4276 The epsilon relationship and the membership relation are the same. (Contributed by Scott Fenton, 11-Apr-2012.)
 |-  B  e.  _V   =>    |-  ( A  _E  B 
 <->  A  e.  B )
 
Theoremepel 4277 The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.)
 |-  ( x  _E  y  <->  x  e.  y )
 
Definitiondf-id 4278* Define the identity relation. Definition 9.15 of [Quine] p. 64. For example, 5  _I 5 and  -. 4  _I 5. (Contributed by NM, 13-Aug-1995.)
 |- 
 _I  =  { <. x ,  y >.  |  x  =  y }
 
2.3.8  Partial and total orderings

We have not yet defined relations (df-rel 4618), but here we introduce a few related notions we will use to develop ordinals. The class variable  R is no different from other class variables, but it reminds us that typically it represents what we will later call a "relation".

 
Syntaxwpo 4279 Extend wff notation to include the strict partial ordering predicate. Read: '  R is a partial order on  A.'
 wff  R  Po  A
 
Syntaxwor 4280 Extend wff notation to include the strict linear ordering predicate. Read: '  R orders  A.'
 wff  R  Or  A
 
Definitiondf-po 4281* Define the strict partial order predicate. Definition of [Enderton] p. 168. The expression  R  Po  A means  R is a partial order on  A. (Contributed by NM, 16-Mar-1997.)
 |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
 
Definitiondf-iso 4282* Define the strict linear order predicate. The expression  R  Or  A is true if relationship  R orders  A. The property  x R y  ->  ( x R z  \/  z R y ) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 
x R y  \/  x  =  y  \/  y R x. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.)
 |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) ) )
 
Theoremposs 4283 Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |-  ( A  C_  B  ->  ( R  Po  B  ->  R  Po  A ) )
 
Theorempoeq1 4284 Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
 |-  ( R  =  S  ->  ( R  Po  A  <->  S  Po  A ) )
 
Theorempoeq2 4285 Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
 |-  ( A  =  B  ->  ( R  Po  A  <->  R  Po  B ) )
 
Theoremnfpo 4286 Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
 |-  F/_ x R   &    |-  F/_ x A   =>    |-  F/ x  R  Po  A
 
Theoremnfso 4287 Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
 |-  F/_ x R   &    |-  F/_ x A   =>    |-  F/ x  R  Or  A
 
Theorempocl 4288 Properties of partial order relation in class notation. (Contributed by NM, 27-Mar-1997.)
 |-  ( R  Po  A  ->  ( ( B  e.  A  /\  C  e.  A  /\  D  e.  A ) 
 ->  ( -.  B R B  /\  ( ( B R C  /\  C R D )  ->  B R D ) ) ) )
 
Theoremispod 4289* Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  -.  x R x )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )   =>    |-  ( ph  ->  R  Po  A )
 
Theoremswopolem 4290* Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )
 )  ->  ( x R y  ->  ( x R z  \/  z R y ) ) )   =>    |-  ( ( ph  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )
 )  ->  ( X R Y  ->  ( X R Z  \/  Z R Y ) ) )
 
Theoremswopo 4291* A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ( ph  /\  (
 y  e.  A  /\  z  e.  A )
 )  ->  ( y R z  ->  -.  z R y ) )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )
 )  ->  ( x R y  ->  ( x R z  \/  z R y ) ) )   =>    |-  ( ph  ->  R  Po  A )
 
Theorempoirr 4292 A partial order relation is irreflexive. (Contributed by NM, 27-Mar-1997.)
 |-  ( ( R  Po  A  /\  B  e.  A )  ->  -.  B R B )
 
Theorempotr 4293 A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.)
 |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A ) )  ->  ( ( B R C  /\  C R D )  ->  B R D ) )
 
Theorempo2nr 4294 A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.)
 |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A ) )  ->  -.  ( B R C  /\  C R B ) )
 
Theorempo3nr 4295 A partial order relation has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.)
 |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A ) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
 
Theorempo0 4296 Any relation is a partial ordering of the empty set. (Contributed by NM, 28-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  R  Po  (/)
 
Theorempofun 4297* A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.)
 |-  S  =  { <. x ,  y >.  |  X R Y }   &    |-  ( x  =  y  ->  X  =  Y )   =>    |-  ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  ->  S  Po  A )
 
Theoremsopo 4298 A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.)
 |-  ( R  Or  A  ->  R  Po  A )
 
Theoremsoss 4299 Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A  C_  B  ->  ( R  Or  B  ->  R  Or  A ) )
 
Theoremsoeq1 4300 Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
 |-  ( R  =  S  ->  ( R  Or  A  <->  S  Or  A ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >