HomeHome Intuitionistic Logic Explorer
Theorem List (p. 43 of 157)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4201-4300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaxpweq 4201* Two equivalent ways to express the Power Set Axiom. Note that ax-pow 4204 is not used by the proof. (Contributed by NM, 22-Jun-2009.)
 |-  A  e.  _V   =>    |-  ( ~P A  e.  _V  <->  E. x A. y
 ( A. z ( z  e.  y  ->  z  e.  A )  ->  y  e.  x ) )
 
2.2.6  Collection principle
 
Theorembnd 4202* A very strong generalization of the Axiom of Replacement (compare zfrep6 4147). Its strength lies in the rather profound fact that  ph ( x ,  y ) does not have to be a "function-like" wff, as it does in the standard Axiom of Replacement. This theorem is sometimes called the Boundedness Axiom. In the context of IZF, it is just a slight variation of ax-coll 4145. (Contributed by NM, 17-Oct-2004.)
 |-  ( A. x  e.  z  E. y ph  ->  E. w A. x  e.  z  E. y  e.  w  ph )
 
Theorembnd2 4203* A variant of the Boundedness Axiom bnd 4202 that picks a subset  z out of a possibly proper class 
B in which a property is true. (Contributed by NM, 4-Feb-2004.)
 |-  A  e.  _V   =>    |-  ( A. x  e.  A  E. y  e.  B  ph  ->  E. z
 ( z  C_  B  /\  A. x  e.  A  E. y  e.  z  ph ) )
 
2.3  IZF Set Theory - add the Axioms of Power Sets and Pairing
 
2.3.1  Introduce the Axiom of Power Sets
 
Axiomax-pow 4204* Axiom of Power Sets. An axiom of Intuitionistic Zermelo-Fraenkel set theory. It states that a set 
y exists that includes the power set of a given set  x i.e. contains every subset of  x. This is Axiom 8 of [Crosilla] p. "Axioms of CZF and IZF" except (a) unnecessary quantifiers are removed, and (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4151).

The variant axpow2 4206 uses explicit subset notation. A version using class notation is pwex 4213. (Contributed by NM, 5-Aug-1993.)

 |- 
 E. y A. z
 ( A. w ( w  e.  z  ->  w  e.  x )  ->  z  e.  y )
 
Theoremzfpow 4205* Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
 |- 
 E. x A. y
 ( A. x ( x  e.  y  ->  x  e.  z )  ->  y  e.  x )
 
Theoremaxpow2 4206* A variant of the Axiom of Power Sets ax-pow 4204 using subset notation. Problem in {BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
 |- 
 E. y A. z
 ( z  C_  x  ->  z  e.  y )
 
Theoremaxpow3 4207* A variant of the Axiom of Power Sets ax-pow 4204. For any set  x, there exists a set  y whose members are exactly the subsets of  x i.e. the power set of  x. Axiom Pow of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
 |- 
 E. y A. z
 ( z  C_  x  <->  z  e.  y )
 
Theoremel 4208* Every set is an element of some other set. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |- 
 E. y  x  e.  y
 
Theoremvpwex 4209 Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4210 from vpwex 4209. (Revised by BJ, 10-Aug-2022.)
 |- 
 ~P x  e.  _V
 
Theorempwexg 4210 Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.)
 |-  ( A  e.  V  ->  ~P A  e.  _V )
 
Theorempwexd 4211 Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  ~P A  e.  _V )
 
Theoremabssexg 4212* Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A  e.  V  ->  { x  |  ( x  C_  A  /\  ph ) }  e.  _V )
 
Theorempwex 4213 Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.)
 |-  A  e.  _V   =>    |-  ~P A  e.  _V
 
Theoremsnexg 4214 A singleton whose element exists is a set. The  A  e.  _V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
 |-  ( A  e.  V  ->  { A }  e.  _V )
 
Theoremsnex 4215 A singleton whose element exists is a set. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  A  e.  _V   =>    |-  { A }  e.  _V
 
Theoremsnexprc 4216 A singleton whose element is a proper class is a set. The  -.  A  e.  _V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
 |-  ( -.  A  e.  _V 
 ->  { A }  e.  _V )
 
Theoremnotnotsnex 4217 A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.)
 |- 
 -.  -.  { A }  e.  _V
 
Theoremp0ex 4218 The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
 |- 
 { (/) }  e.  _V
 
Theorempp0ex 4219  { (/) ,  { (/)
} } (the ordinal 2) is a set. (Contributed by NM, 5-Aug-1993.)
 |- 
 { (/) ,  { (/) } }  e.  _V
 
Theoremord3ex 4220 The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.)
 |- 
 { (/) ,  { (/) } ,  { (/) ,  { (/) } } }  e.  _V
 
Theoremdtruarb 4221* At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). This theorem asserts the existence of two sets which do not equal each other; compare with dtruex 4592 in which we are given a set  y and go from there to a set  x which is not equal to it. (Contributed by Jim Kingdon, 2-Sep-2018.)
 |- 
 E. x E. y  -.  x  =  y
 
Theorempwuni 4222 A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
 |-  A  C_  ~P U. A
 
Theoremundifexmid 4223* Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3528 and undifdcss 6981 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.)
 |-  ( x  C_  y  <->  ( x  u.  ( y 
 \  x ) )  =  y )   =>    |-  ( ph  \/  -.  ph )
 
2.3.2  A notation for excluded middle
 
Syntaxwem 4224 Formula for an abbreviation of excluded middle.
 wff EXMID
 
Definitiondf-exmid 4225 The expression EXMID will be used as a readable shorthand for any form of the law of the excluded middle; this is a useful shorthand largely because it hides statements of the form "for any proposition" in a system which can only quantify over sets, not propositions.

To see how this compares with other ways of expressing excluded middle, compare undifexmid 4223 with exmidundif 4236. The former may be more recognizable as excluded middle because it is in terms of propositions, and the proof may be easier to follow for much the same reason (it just has to show  ph and  -.  ph in the the relevant parts of the proof). The latter, however, has the key advantage of being able to prove both directions of the biconditional. To state that excluded middle implies a proposition is hard to do gracefully without EXMID, because there is no way to write a hypothesis  ph  \/  -.  ph for an arbitrary proposition; instead the hypothesis would need to be the particular instance of excluded middle which that proof needs. Or to say it another way, EXMID implies DECID  ph by exmidexmid 4226 but there is no good way to express the converse.

This definition and how we use it is easiest to understand (and most appropriate to assign the name "excluded middle" to) if we assume ax-sep 4148, in which case EXMID means that all propositions are decidable (see exmidexmid 4226 and notice that it relies on ax-sep 4148). If we instead work with ax-bdsep 15446, EXMID as defined here means that all bounded propositions are decidable.

(Contributed by Mario Carneiro and Jim Kingdon, 18-Jun-2022.)

 |-  (EXMID  <->  A. x ( x  C_  { (/) }  -> DECID  (/)  e.  x ) )
 
Theoremexmidexmid 4226 EXMID implies that an arbitrary proposition is decidable. That is, EXMID captures the usual meaning of excluded middle when stated in terms of propositions.

To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 844, peircedc 915, or condc 854.

(Contributed by Jim Kingdon, 18-Jun-2022.)

 |-  (EXMID 
 -> DECID  ph )
 
Theoremss1o0el1 4227 A subclass of  { (/) } contains the empty set if and only if it equals  { (/) }. (Contributed by BJ and Jim Kingdon, 9-Aug-2024.)
 |-  ( A  C_  { (/) }  ->  ( (/)  e.  A  <->  A  =  { (/)
 } ) )
 
Theoremexmid01 4228 Excluded middle is equivalent to saying any subset of  { (/)
} is either  (/) or  { (/) }. (Contributed by BJ and Jim Kingdon, 18-Jun-2022.)
 |-  (EXMID  <->  A. x ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
 
Theorempwntru 4229 A slight strengthening of pwtrufal 15558. (Contributed by Mario Carneiro and Jim Kingdon, 12-Sep-2023.)
 |-  ( ( A  C_  { (/) }  /\  A  =/=  { (/) } )  ->  A  =  (/) )
 
Theoremexmid1dc 4230* A convenience theorem for proving that something implies EXMID. Think of this as an alternative to using a proposition, as in proofs like undifexmid 4223 or ordtriexmid 4554. In this context  x  =  { (/) } can be thought of as "x is true". (Contributed by Jim Kingdon, 21-Nov-2023.)
 |-  ( ( ph  /\  x  C_ 
 { (/) } )  -> DECID  x  =  { (/) } )   =>    |-  ( ph  -> EXMID )
 
Theoremexmidn0m 4231* Excluded middle is equivalent to any set being empty or inhabited. (Contributed by Jim Kingdon, 5-Mar-2023.)
 |-  (EXMID  <->  A. x ( x  =  (/)  \/  E. y  y  e.  x ) )
 
Theoremexmidsssn 4232* Excluded middle is equivalent to the biconditionalized version of sssnr 3780 for sets. (Contributed by Jim Kingdon, 5-Mar-2023.)
 |-  (EXMID  <->  A. x A. y ( x  C_  { y } 
 <->  ( x  =  (/)  \/  x  =  { y } ) ) )
 
Theoremexmidsssnc 4233* Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4228 but lets you choose any set as the element of the singleton rather than just  (/). It is similar to exmidsssn 4232 but for a particular set  B rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.)
 |-  ( B  e.  V  ->  (EXMID  <->  A. x ( x  C_  { B }  ->  ( x  =  (/)  \/  x  =  { B } )
 ) ) )
 
Theoremexmid0el 4234 Excluded middle is equivalent to decidability of  (/) being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.)
 |-  (EXMID  <->  A. xDECID  (/)  e.  x )
 
Theoremexmidel 4235* Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.)
 |-  (EXMID  <->  A. x A. yDECID  x  e.  y )
 
Theoremexmidundif 4236* Excluded middle is equivalent to every subset having a complement. That is, the union of a subset and its relative complement being the whole set. Although special cases such as undifss 3528 and undifdcss 6981 are provable, the full statement is equivalent to excluded middle as shown here. (Contributed by Jim Kingdon, 18-Jun-2022.)
 |-  (EXMID  <->  A. x A. y ( x  C_  y  <->  ( x  u.  ( y  \  x ) )  =  y ) )
 
Theoremexmidundifim 4237* Excluded middle is equivalent to every subset having a complement. Variation of exmidundif 4236 with an implication rather than a biconditional. (Contributed by Jim Kingdon, 16-Feb-2023.)
 |-  (EXMID  <->  A. x A. y ( x  C_  y  ->  ( x  u.  ( y 
 \  x ) )  =  y ) )
 
Theoremexmid1stab 4238* If every proposition is stable, excluded middle follows. We are thinking of  x as a proposition and  x  =  { (/)
} as " x is true". (Contributed by Jim Kingdon, 28-Nov-2023.)
 |-  ( ( ph  /\  x  C_ 
 { (/) } )  -> STAB  x  =  { (/) } )   =>    |-  ( ph  -> EXMID )
 
2.3.3  Axiom of Pairing
 
Axiomax-pr 4239* The Axiom of Pairing of IZF set theory. Axiom 2 of [Crosilla] p. "Axioms of CZF and IZF", except (a) unnecessary quantifiers are removed, and (b) Crosilla has a biconditional rather than an implication (but the two are equivalent by bm1.3ii 4151). (Contributed by NM, 14-Nov-2006.)
 |- 
 E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
 
Theoremzfpair2 4240 Derive the abbreviated version of the Axiom of Pairing from ax-pr 4239. (Contributed by NM, 14-Nov-2006.)
 |- 
 { x ,  y }  e.  _V
 
Theoremprexg 4241 The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3729, prprc1 3727, and prprc2 3728. (Contributed by Jim Kingdon, 16-Sep-2018.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  { A ,  B }  e.  _V )
 
Theoremsnelpwi 4242 A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011.)
 |-  ( A  e.  B  ->  { A }  e.  ~P B )
 
Theoremsnelpw 4243 A singleton of a set belongs to the power class of a class containing the set. (Contributed by NM, 1-Apr-1998.)
 |-  A  e.  _V   =>    |-  ( A  e.  B 
 <->  { A }  e.  ~P B )
 
Theoremprelpwi 4244 A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.)
 |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  e.  ~P C )
 
Theoremrext 4245* A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
 |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
 
Theoremsspwb 4246 Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
 |-  ( A  C_  B  <->  ~P A  C_  ~P B )
 
Theoremunipw 4247 A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
 |- 
 U. ~P A  =  A
 
Theorempwel 4248 Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
 |-  ( A  e.  B  ->  ~P A  e.  ~P ~P U. B )
 
Theorempwtr 4249 A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
 |-  ( Tr  A  <->  Tr  ~P A )
 
Theoremssextss 4250* An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
 |-  ( A  C_  B  <->  A. x ( x  C_  A  ->  x  C_  B ) )
 
Theoremssext 4251* An extensionality-like principle that uses the subset instead of the membership relation: two classes are equal iff they have the same subsets. (Contributed by NM, 30-Jun-2004.)
 |-  ( A  =  B  <->  A. x ( x  C_  A 
 <->  x  C_  B )
 )
 
Theoremnssssr 4252* Negation of subclass relationship. Compare nssr 3240. (Contributed by Jim Kingdon, 17-Sep-2018.)
 |-  ( E. x ( x  C_  A  /\  -.  x  C_  B )  ->  -.  A  C_  B )
 
Theorempweqb 4253 Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
 |-  ( A  =  B  <->  ~P A  =  ~P B )
 
Theoremintid 4254* The intersection of all sets to which a set belongs is the singleton of that set. (Contributed by NM, 5-Jun-2009.)
 |-  A  e.  _V   =>    |-  |^| { x  |  A  e.  x }  =  { A }
 
Theoremeuabex 4255 The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
 |-  ( E! x ph  ->  { x  |  ph }  e.  _V )
 
Theoremmss 4256* An inhabited class (even if proper) has an inhabited subset. (Contributed by Jim Kingdon, 17-Sep-2018.)
 |-  ( E. y  y  e.  A  ->  E. x ( x  C_  A  /\  E. z  z  e.  x ) )
 
Theoremexss 4257* Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003.)
 |-  ( E. x  e.  A  ph  ->  E. y
 ( y  C_  A  /\  E. x  e.  y  ph ) )
 
Theoremopexg 4258 An ordered pair of sets is a set. (Contributed by Jim Kingdon, 11-Jan-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  <. A ,  B >.  e.  _V )
 
Theoremopex 4259 An ordered pair of sets is a set. (Contributed by Jim Kingdon, 24-Sep-2018.) (Revised by Mario Carneiro, 24-May-2019.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 <. A ,  B >.  e. 
 _V
 
Theoremotexg 4260 An ordered triple of sets is a set. (Contributed by Jim Kingdon, 19-Sep-2018.)
 |-  ( ( A  e.  U  /\  B  e.  V  /\  C  e.  W ) 
 ->  <. A ,  B ,  C >.  e.  _V )
 
Theoremelop 4261 An ordered pair has two elements. Exercise 3 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  e.  <. B ,  C >. 
 <->  ( A  =  { B }  \/  A  =  { B ,  C } ) )
 
Theoremopi1 4262 One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { A }  e.  <. A ,  B >.
 
Theoremopi2 4263 One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 { A ,  B }  e.  <. A ,  B >.
 
2.3.4  Ordered pair theorem
 
Theoremopm 4264* An ordered pair is inhabited iff the arguments are sets. (Contributed by Jim Kingdon, 21-Sep-2018.)
 |-  ( E. x  x  e.  <. A ,  B >.  <-> 
 ( A  e.  _V  /\  B  e.  _V )
 )
 
Theoremopnzi 4265 An ordered pair is nonempty if the arguments are sets (it is also inhabited; see opm 4264). (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 <. A ,  B >.  =/=  (/)
 
Theoremopth1 4266 Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  =  <. C ,  D >.  ->  A  =  C )
 
Theoremopth 4267 The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of [TakeutiZaring] p. 16. Note that  C and  D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
 ( A  =  C  /\  B  =  D ) )
 
Theoremopthg 4268 Ordered pair theorem.  C and  D are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >. 
 <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremopthg2 4269 Ordered pair theorem. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( C  e.  V  /\  D  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >. 
 <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremopth2 4270 Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
 |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
 ( A  =  C  /\  B  =  D ) )
 
Theoremotth2 4271 Ordered triple theorem, with triple express with ordered pairs. (Contributed by NM, 1-May-1995.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  R  e.  _V   =>    |-  ( <.
 <. A ,  B >. ,  R >.  =  <. <. C ,  D >. ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S ) )
 
Theoremotth 4272 Ordered triple theorem. (Contributed by NM, 25-Sep-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  R  e.  _V   =>    |-  ( <. A ,  B ,  R >.  =  <. C ,  D ,  S >.  <->  ( A  =  C  /\  B  =  D  /\  R  =  S )
 )
 
Theoremeqvinop 4273* A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.)
 |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( A  =  <. B ,  C >.  <->  E. x E. y
 ( A  =  <. x ,  y >.  /\  <. x ,  y >.  =  <. B ,  C >. ) )
 
Theoremcopsexg 4274* Substitution of class  A for ordered pair  <. x ,  y
>.. (Contributed by NM, 27-Dec-1996.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( A  =  <. x ,  y >.  ->  ( ph 
 <-> 
 E. x E. y
 ( A  =  <. x ,  y >.  /\  ph )
 ) )
 
Theoremcopsex2t 4275* Closed theorem form of copsex2g 4276. (Contributed by NM, 17-Feb-2013.)
 |-  ( ( A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )  /\  ( A  e.  V  /\  B  e.  W ) )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph )  <->  ps ) )
 
Theoremcopsex2g 4276* Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y (
 <. A ,  B >.  = 
 <. x ,  y >.  /\  ph )  <->  ps ) )
 
Theoremcopsex4g 4277* An implicit substitution inference for 2 ordered pairs. (Contributed by NM, 5-Aug-1995.)
 |-  ( ( ( x  =  A  /\  y  =  B )  /\  (
 z  =  C  /\  w  =  D )
 )  ->  ( ph  <->  ps ) )   =>    |-  ( ( ( A  e.  R  /\  B  e.  S )  /\  ( C  e.  R  /\  D  e.  S )
 )  ->  ( E. x E. y E. z E. w ( ( <. A ,  B >.  =  <. x ,  y >.  /\  <. C ,  D >.  =  <. z ,  w >. )  /\  ph )  <->  ps ) )
 
Theorem0nelop 4278 A property of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 -.  (/)  e.  <. A ,  B >.
 
Theoremopeqex 4279 Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
 |-  ( <. A ,  B >.  =  <. C ,  D >.  ->  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( C  e.  _V 
 /\  D  e.  _V ) ) )
 
Theoremopcom 4280 An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  =  <. B ,  A >.  <->  A  =  B )
 
Theoremmoop2 4281* "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  B  e.  _V   =>    |-  E* x  A  =  <. B ,  x >.
 
Theoremopeqsn 4282 Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   =>    |-  ( <. A ,  B >.  =  { C }  <->  ( A  =  B  /\  C  =  { A } ) )
 
Theoremopeqpr 4283 Equivalence for an ordered pair equal to an unordered pair. (Contributed by NM, 3-Jun-2008.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( <. A ,  B >.  =  { C ,  D }  <->  ( ( C  =  { A }  /\  D  =  { A ,  B } )  \/  ( C  =  { A ,  B }  /\  D  =  { A } ) ) )
 
Theoremeuotd 4284* Prove existential uniqueness for an ordered triple. (Contributed by Mario Carneiro, 20-May-2015.)
 |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  C  e.  _V )   &    |-  ( ph  ->  ( ps 
 <->  ( a  =  A  /\  b  =  B  /\  c  =  C ) ) )   =>    |-  ( ph  ->  E! x E. a E. b E. c ( x  =  <. a ,  b ,  c >.  /\  ps )
 )
 
Theoremuniop 4285 The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 U. <. A ,  B >.  =  { A ,  B }
 
Theoremuniopel 4286 Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  C  ->  U. <. A ,  B >.  e.  U. C )
 
2.3.5  Ordered-pair class abstractions (cont.)
 
Theoremopabid 4287 The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( <. x ,  y >.  e.  { <. x ,  y >.  |  ph }  <->  ph )
 
Theoremopabidw 4288* The law of concretion. Special case of Theorem 9.5 of [Quine] p. 61. Version of opabid 4287 with a disjoint variable condition. (Contributed by NM, 14-Apr-1995.) (Revised by GG, 26-Jan-2024.)
 |-  ( <. x ,  y >.  e.  { <. x ,  y >.  |  ph }  <->  ph )
 
Theoremelopab 4289* Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.)
 |-  ( A  e.  { <. x ,  y >.  | 
 ph }  <->  E. x E. y
 ( A  =  <. x ,  y >.  /\  ph )
 )
 
TheoremopelopabsbALT 4290* The law of concretion in terms of substitutions. Less general than opelopabsb 4291, but having a much shorter proof. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( <. z ,  w >.  e.  { <. x ,  y >.  |  ph }  <->  [ w  /  y ] [ z  /  x ] ph )
 
Theoremopelopabsb 4291* The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002.) (Revised by Mario Carneiro, 18-Nov-2016.)
 |-  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  [. A  /  x ].
 [. B  /  y ]. ph )
 
Theorembrabsb 4292* The law of concretion in terms of substitutions. (Contributed by NM, 17-Mar-2008.)
 |-  R  =  { <. x ,  y >.  |  ph }   =>    |-  ( A R B  <->  [. A  /  x ].
 [. B  /  y ]. ph )
 
Theoremopelopabt 4293* Closed theorem form of opelopab 4303. (Contributed by NM, 19-Feb-2013.)
 |-  ( ( A. x A. y ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x A. y ( y  =  B  ->  ( ps  <->  ch ) )  /\  ( A  e.  V  /\  B  e.  W ) )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ch ) )
 
Theoremopelopabga 4294* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e. 
 { <. x ,  y >.  |  ph }  <->  ps ) )
 
Theorembrabga 4295* The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   &    |-  R  =  { <. x ,  y >.  |  ph }   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A R B  <->  ps ) )
 
Theoremopelopab2a 4296* Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e. 
 { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) } 
 <->  ps ) )
 
Theoremopelopaba 4297* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ps )
 
Theorembraba 4298* The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   &    |-  R  =  { <. x ,  y >.  |  ph }   =>    |-  ( A R B 
 <->  ps )
 
Theoremopelopabg 4299* The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e. 
 { <. x ,  y >.  |  ph }  <->  ch ) )
 
Theorembrabg 4300* The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  R  =  { <. x ,  y >.  |  ph }   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ch ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15644
  Copyright terms: Public domain < Previous  Next >