ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabex2 Unicode version

Theorem rabex2 4190
Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
rabex2.1  |-  B  =  { x  e.  A  |  ps }
rabex2.2  |-  A  e. 
_V
Assertion
Ref Expression
rabex2  |-  B  e. 
_V
Distinct variable group:    x, A
Allowed substitution hints:    ps( x)    B( x)

Proof of Theorem rabex2
StepHypRef Expression
1 rabex2.2 . 2  |-  A  e. 
_V
2 rabex2.1 . . 3  |-  B  =  { x  e.  A  |  ps }
3 id 19 . . 3  |-  ( A  e.  _V  ->  A  e.  _V )
42, 3rabexd 4189 . 2  |-  ( A  e.  _V  ->  B  e.  _V )
51, 4ax-mp 5 1  |-  B  e. 
_V
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   {crab 2488   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-in 3172  df-ss 3179
This theorem is referenced by:  rab2ex  4191
  Copyright terms: Public domain W3C validator