ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elssabg Unicode version

Theorem elssabg 4166
Description: Membership in a class abstraction involving a subset. Unlike elabg 2898,  A does not have to be a set. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elssabg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
elssabg  |-  ( B  e.  V  ->  ( A  e.  { x  |  ( x  C_  B  /\  ph ) }  <-> 
( A  C_  B  /\  ps ) ) )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem elssabg
StepHypRef Expression
1 ssexg 4157 . . . 4  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
21expcom 116 . . 3  |-  ( B  e.  V  ->  ( A  C_  B  ->  A  e.  _V ) )
32adantrd 279 . 2  |-  ( B  e.  V  ->  (
( A  C_  B  /\  ps )  ->  A  e.  _V ) )
4 sseq1 3193 . . . 4  |-  ( x  =  A  ->  (
x  C_  B  <->  A  C_  B
) )
5 elssabg.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
64, 5anbi12d 473 . . 3  |-  ( x  =  A  ->  (
( x  C_  B  /\  ph )  <->  ( A  C_  B  /\  ps )
) )
76elab3g 2903 . 2  |-  ( ( ( A  C_  B  /\  ps )  ->  A  e.  _V )  ->  ( A  e.  { x  |  ( x  C_  B  /\  ph ) }  <-> 
( A  C_  B  /\  ps ) ) )
83, 7syl 14 1  |-  ( B  e.  V  ->  ( A  e.  { x  |  ( x  C_  B  /\  ph ) }  <-> 
( A  C_  B  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175   _Vcvv 2752    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator