| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rab2ex | GIF version | ||
| Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rab2ex.1 | ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| rab2ex.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rab2ex | ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rab2ex.1 | . . 3 ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} | |
| 2 | rab2ex.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 1, 2 | rabex2 4230 | . 2 ⊢ 𝐵 ∈ V |
| 4 | 3 | rabex 4228 | 1 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 {crab 2512 Vcvv 2799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |