ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq2i Unicode version

Theorem rabeq2i 2727
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
Hypothesis
Ref Expression
rabeq2i.1  |-  A  =  { x  e.  B  |  ph }
Assertion
Ref Expression
rabeq2i  |-  ( x  e.  A  <->  ( x  e.  B  /\  ph )
)

Proof of Theorem rabeq2i
StepHypRef Expression
1 rabeq2i.1 . . 3  |-  A  =  { x  e.  B  |  ph }
21eleq2i 2237 . 2  |-  ( x  e.  A  <->  x  e.  { x  e.  B  |  ph } )
3 rabid 2645 . 2  |-  ( x  e.  { x  e.  B  |  ph }  <->  ( x  e.  B  /\  ph ) )
42, 3bitri 183 1  |-  ( x  e.  A  <->  ( x  e.  B  /\  ph )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-rab 2457
This theorem is referenced by:  tfis  4567  fvmptssdm  5580  suplocsrlempr  7769  suplocsrlem  7770
  Copyright terms: Public domain W3C validator