ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptssdm Unicode version

Theorem fvmptssdm 5471
Description: If all the values of the mapping are subsets of a class  C, then so is any evaluation of the mapping at a value in the domain of the mapping. (Contributed by Jim Kingdon, 3-Jan-2018.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmptssdm  |-  ( ( D  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  D
)  C_  C )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    D( x)    F( x)

Proof of Theorem fvmptssdm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fveq2 5387 . . . . . 6  |-  ( y  =  D  ->  ( F `  y )  =  ( F `  D ) )
21sseq1d 3094 . . . . 5  |-  ( y  =  D  ->  (
( F `  y
)  C_  C  <->  ( F `  D )  C_  C
) )
32imbi2d 229 . . . 4  |-  ( y  =  D  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) ) )
4 nfrab1 2585 . . . . . . 7  |-  F/_ x { x  e.  A  |  B  e.  _V }
54nfcri 2250 . . . . . 6  |-  F/ x  y  e.  { x  e.  A  |  B  e.  _V }
6 nfra1 2441 . . . . . . 7  |-  F/ x A. x  e.  A  B  C_  C
7 fvmpt2.1 . . . . . . . . . 10  |-  F  =  ( x  e.  A  |->  B )
8 nfmpt1 3989 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
97, 8nfcxfr 2253 . . . . . . . . 9  |-  F/_ x F
10 nfcv 2256 . . . . . . . . 9  |-  F/_ x
y
119, 10nffv 5397 . . . . . . . 8  |-  F/_ x
( F `  y
)
12 nfcv 2256 . . . . . . . 8  |-  F/_ x C
1311, 12nfss 3058 . . . . . . 7  |-  F/ x
( F `  y
)  C_  C
146, 13nfim 1534 . . . . . 6  |-  F/ x
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )
155, 14nfim 1534 . . . . 5  |-  F/ x
( y  e.  {
x  e.  A  |  B  e.  _V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) )
16 eleq1 2178 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  { x  e.  A  |  B  e.  _V }  <->  y  e.  { x  e.  A  |  B  e.  _V } ) )
17 fveq2 5387 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1817sseq1d 3094 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  C_  C  <->  ( F `  y )  C_  C
) )
1918imbi2d 229 . . . . . 6  |-  ( x  =  y  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  x
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) ) )
2016, 19imbi12d 233 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  {
x  e.  A  |  B  e.  _V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  x )  C_  C ) )  <->  ( y  e.  { x  e.  A  |  B  e.  _V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )
) ) )
217dmmpt 5002 . . . . . . 7  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
2221eleq2i 2182 . . . . . 6  |-  ( x  e.  dom  F  <->  x  e.  { x  e.  A  |  B  e.  _V } )
2321rabeq2i 2655 . . . . . . . . . 10  |-  ( x  e.  dom  F  <->  ( x  e.  A  /\  B  e. 
_V ) )
247fvmpt2 5470 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  =  B )
25 eqimss 3119 . . . . . . . . . . 11  |-  ( ( F `  x )  =  B  ->  ( F `  x )  C_  B )
2624, 25syl 14 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  C_  B )
2723, 26sylbi 120 . . . . . . . . 9  |-  ( x  e.  dom  F  -> 
( F `  x
)  C_  B )
2827adantr 272 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  x
)  C_  B )
297dmmptss 5003 . . . . . . . . . 10  |-  dom  F  C_  A
3029sseli 3061 . . . . . . . . 9  |-  ( x  e.  dom  F  ->  x  e.  A )
31 rsp 2455 . . . . . . . . 9  |-  ( A. x  e.  A  B  C_  C  ->  ( x  e.  A  ->  B  C_  C ) )
3230, 31mpan9 277 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  A. x  e.  A  B  C_  C )  ->  B  C_  C )
3328, 32sstrd 3075 . . . . . . 7  |-  ( ( x  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  x
)  C_  C )
3433ex 114 . . . . . 6  |-  ( x  e.  dom  F  -> 
( A. x  e.  A  B  C_  C  ->  ( F `  x
)  C_  C )
)
3522, 34sylbir 134 . . . . 5  |-  ( x  e.  { x  e.  A  |  B  e. 
_V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  x )  C_  C ) )
3615, 20, 35chvar 1713 . . . 4  |-  ( y  e.  { x  e.  A  |  B  e. 
_V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) )
373, 36vtoclga 2724 . . 3  |-  ( D  e.  { x  e.  A  |  B  e. 
_V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) )
3837, 21eleq2s 2210 . 2  |-  ( D  e.  dom  F  -> 
( A. x  e.  A  B  C_  C  ->  ( F `  D
)  C_  C )
)
3938imp 123 1  |-  ( ( D  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  D
)  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   A.wral 2391   {crab 2395   _Vcvv 2658    C_ wss 3039    |-> cmpt 3957   dom cdm 4507   ` cfv 5091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fv 5099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator