| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvmptssdm | Unicode version | ||
| Description: If all the values of the
mapping are subsets of a class  | 
| Ref | Expression | 
|---|---|
| fvmpt2.1 | 
 | 
| Ref | Expression | 
|---|---|
| fvmptssdm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq2 5558 | 
. . . . . 6
 | |
| 2 | 1 | sseq1d 3212 | 
. . . . 5
 | 
| 3 | 2 | imbi2d 230 | 
. . . 4
 | 
| 4 | nfrab1 2677 | 
. . . . . . 7
 | |
| 5 | 4 | nfcri 2333 | 
. . . . . 6
 | 
| 6 | nfra1 2528 | 
. . . . . . 7
 | |
| 7 | fvmpt2.1 | 
. . . . . . . . . 10
 | |
| 8 | nfmpt1 4126 | 
. . . . . . . . . 10
 | |
| 9 | 7, 8 | nfcxfr 2336 | 
. . . . . . . . 9
 | 
| 10 | nfcv 2339 | 
. . . . . . . . 9
 | |
| 11 | 9, 10 | nffv 5568 | 
. . . . . . . 8
 | 
| 12 | nfcv 2339 | 
. . . . . . . 8
 | |
| 13 | 11, 12 | nfss 3176 | 
. . . . . . 7
 | 
| 14 | 6, 13 | nfim 1586 | 
. . . . . 6
 | 
| 15 | 5, 14 | nfim 1586 | 
. . . . 5
 | 
| 16 | eleq1 2259 | 
. . . . . 6
 | |
| 17 | fveq2 5558 | 
. . . . . . . 8
 | |
| 18 | 17 | sseq1d 3212 | 
. . . . . . 7
 | 
| 19 | 18 | imbi2d 230 | 
. . . . . 6
 | 
| 20 | 16, 19 | imbi12d 234 | 
. . . . 5
 | 
| 21 | 7 | dmmpt 5165 | 
. . . . . . 7
 | 
| 22 | 21 | eleq2i 2263 | 
. . . . . 6
 | 
| 23 | 21 | rabeq2i 2760 | 
. . . . . . . . . 10
 | 
| 24 | 7 | fvmpt2 5645 | 
. . . . . . . . . . 11
 | 
| 25 | eqimss 3237 | 
. . . . . . . . . . 11
 | |
| 26 | 24, 25 | syl 14 | 
. . . . . . . . . 10
 | 
| 27 | 23, 26 | sylbi 121 | 
. . . . . . . . 9
 | 
| 28 | 27 | adantr 276 | 
. . . . . . . 8
 | 
| 29 | 7 | dmmptss 5166 | 
. . . . . . . . . 10
 | 
| 30 | 29 | sseli 3179 | 
. . . . . . . . 9
 | 
| 31 | rsp 2544 | 
. . . . . . . . 9
 | |
| 32 | 30, 31 | mpan9 281 | 
. . . . . . . 8
 | 
| 33 | 28, 32 | sstrd 3193 | 
. . . . . . 7
 | 
| 34 | 33 | ex 115 | 
. . . . . 6
 | 
| 35 | 22, 34 | sylbir 135 | 
. . . . 5
 | 
| 36 | 15, 20, 35 | chvar 1771 | 
. . . 4
 | 
| 37 | 3, 36 | vtoclga 2830 | 
. . 3
 | 
| 38 | 37, 21 | eleq2s 2291 | 
. 2
 | 
| 39 | 38 | imp 124 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fv 5266 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |