Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvmptssdm | Unicode version |
Description: If all the values of the mapping are subsets of a class , then so is any evaluation of the mapping at a value in the domain of the mapping. (Contributed by Jim Kingdon, 3-Jan-2018.) |
Ref | Expression |
---|---|
fvmpt2.1 |
Ref | Expression |
---|---|
fvmptssdm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5486 | . . . . . 6 | |
2 | 1 | sseq1d 3171 | . . . . 5 |
3 | 2 | imbi2d 229 | . . . 4 |
4 | nfrab1 2645 | . . . . . . 7 | |
5 | 4 | nfcri 2302 | . . . . . 6 |
6 | nfra1 2497 | . . . . . . 7 | |
7 | fvmpt2.1 | . . . . . . . . . 10 | |
8 | nfmpt1 4075 | . . . . . . . . . 10 | |
9 | 7, 8 | nfcxfr 2305 | . . . . . . . . 9 |
10 | nfcv 2308 | . . . . . . . . 9 | |
11 | 9, 10 | nffv 5496 | . . . . . . . 8 |
12 | nfcv 2308 | . . . . . . . 8 | |
13 | 11, 12 | nfss 3135 | . . . . . . 7 |
14 | 6, 13 | nfim 1560 | . . . . . 6 |
15 | 5, 14 | nfim 1560 | . . . . 5 |
16 | eleq1 2229 | . . . . . 6 | |
17 | fveq2 5486 | . . . . . . . 8 | |
18 | 17 | sseq1d 3171 | . . . . . . 7 |
19 | 18 | imbi2d 229 | . . . . . 6 |
20 | 16, 19 | imbi12d 233 | . . . . 5 |
21 | 7 | dmmpt 5099 | . . . . . . 7 |
22 | 21 | eleq2i 2233 | . . . . . 6 |
23 | 21 | rabeq2i 2723 | . . . . . . . . . 10 |
24 | 7 | fvmpt2 5569 | . . . . . . . . . . 11 |
25 | eqimss 3196 | . . . . . . . . . . 11 | |
26 | 24, 25 | syl 14 | . . . . . . . . . 10 |
27 | 23, 26 | sylbi 120 | . . . . . . . . 9 |
28 | 27 | adantr 274 | . . . . . . . 8 |
29 | 7 | dmmptss 5100 | . . . . . . . . . 10 |
30 | 29 | sseli 3138 | . . . . . . . . 9 |
31 | rsp 2513 | . . . . . . . . 9 | |
32 | 30, 31 | mpan9 279 | . . . . . . . 8 |
33 | 28, 32 | sstrd 3152 | . . . . . . 7 |
34 | 33 | ex 114 | . . . . . 6 |
35 | 22, 34 | sylbir 134 | . . . . 5 |
36 | 15, 20, 35 | chvar 1745 | . . . 4 |
37 | 3, 36 | vtoclga 2792 | . . 3 |
38 | 37, 21 | eleq2s 2261 | . 2 |
39 | 38 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 crab 2448 cvv 2726 wss 3116 cmpt 4043 cdm 4604 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |