| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptssdm | Unicode version | ||
| Description: If all the values of the
mapping are subsets of a class |
| Ref | Expression |
|---|---|
| fvmpt2.1 |
|
| Ref | Expression |
|---|---|
| fvmptssdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5627 |
. . . . . 6
| |
| 2 | 1 | sseq1d 3253 |
. . . . 5
|
| 3 | 2 | imbi2d 230 |
. . . 4
|
| 4 | nfrab1 2711 |
. . . . . . 7
| |
| 5 | 4 | nfcri 2366 |
. . . . . 6
|
| 6 | nfra1 2561 |
. . . . . . 7
| |
| 7 | fvmpt2.1 |
. . . . . . . . . 10
| |
| 8 | nfmpt1 4177 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | nfcxfr 2369 |
. . . . . . . . 9
|
| 10 | nfcv 2372 |
. . . . . . . . 9
| |
| 11 | 9, 10 | nffv 5637 |
. . . . . . . 8
|
| 12 | nfcv 2372 |
. . . . . . . 8
| |
| 13 | 11, 12 | nfss 3217 |
. . . . . . 7
|
| 14 | 6, 13 | nfim 1618 |
. . . . . 6
|
| 15 | 5, 14 | nfim 1618 |
. . . . 5
|
| 16 | eleq1 2292 |
. . . . . 6
| |
| 17 | fveq2 5627 |
. . . . . . . 8
| |
| 18 | 17 | sseq1d 3253 |
. . . . . . 7
|
| 19 | 18 | imbi2d 230 |
. . . . . 6
|
| 20 | 16, 19 | imbi12d 234 |
. . . . 5
|
| 21 | 7 | dmmpt 5224 |
. . . . . . 7
|
| 22 | 21 | eleq2i 2296 |
. . . . . 6
|
| 23 | 21 | rabeq2i 2796 |
. . . . . . . . . 10
|
| 24 | 7 | fvmpt2 5718 |
. . . . . . . . . . 11
|
| 25 | eqimss 3278 |
. . . . . . . . . . 11
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . . . 10
|
| 27 | 23, 26 | sylbi 121 |
. . . . . . . . 9
|
| 28 | 27 | adantr 276 |
. . . . . . . 8
|
| 29 | 7 | dmmptss 5225 |
. . . . . . . . . 10
|
| 30 | 29 | sseli 3220 |
. . . . . . . . 9
|
| 31 | rsp 2577 |
. . . . . . . . 9
| |
| 32 | 30, 31 | mpan9 281 |
. . . . . . . 8
|
| 33 | 28, 32 | sstrd 3234 |
. . . . . . 7
|
| 34 | 33 | ex 115 |
. . . . . 6
|
| 35 | 22, 34 | sylbir 135 |
. . . . 5
|
| 36 | 15, 20, 35 | chvar 1803 |
. . . 4
|
| 37 | 3, 36 | vtoclga 2867 |
. . 3
|
| 38 | 37, 21 | eleq2s 2324 |
. 2
|
| 39 | 38 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fv 5326 |
| This theorem is referenced by: relmptopab 6207 |
| Copyright terms: Public domain | W3C validator |