| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptssdm | Unicode version | ||
| Description: If all the values of the
mapping are subsets of a class |
| Ref | Expression |
|---|---|
| fvmpt2.1 |
|
| Ref | Expression |
|---|---|
| fvmptssdm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5561 |
. . . . . 6
| |
| 2 | 1 | sseq1d 3213 |
. . . . 5
|
| 3 | 2 | imbi2d 230 |
. . . 4
|
| 4 | nfrab1 2677 |
. . . . . . 7
| |
| 5 | 4 | nfcri 2333 |
. . . . . 6
|
| 6 | nfra1 2528 |
. . . . . . 7
| |
| 7 | fvmpt2.1 |
. . . . . . . . . 10
| |
| 8 | nfmpt1 4127 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | nfcxfr 2336 |
. . . . . . . . 9
|
| 10 | nfcv 2339 |
. . . . . . . . 9
| |
| 11 | 9, 10 | nffv 5571 |
. . . . . . . 8
|
| 12 | nfcv 2339 |
. . . . . . . 8
| |
| 13 | 11, 12 | nfss 3177 |
. . . . . . 7
|
| 14 | 6, 13 | nfim 1586 |
. . . . . 6
|
| 15 | 5, 14 | nfim 1586 |
. . . . 5
|
| 16 | eleq1 2259 |
. . . . . 6
| |
| 17 | fveq2 5561 |
. . . . . . . 8
| |
| 18 | 17 | sseq1d 3213 |
. . . . . . 7
|
| 19 | 18 | imbi2d 230 |
. . . . . 6
|
| 20 | 16, 19 | imbi12d 234 |
. . . . 5
|
| 21 | 7 | dmmpt 5166 |
. . . . . . 7
|
| 22 | 21 | eleq2i 2263 |
. . . . . 6
|
| 23 | 21 | rabeq2i 2760 |
. . . . . . . . . 10
|
| 24 | 7 | fvmpt2 5648 |
. . . . . . . . . . 11
|
| 25 | eqimss 3238 |
. . . . . . . . . . 11
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . . . 10
|
| 27 | 23, 26 | sylbi 121 |
. . . . . . . . 9
|
| 28 | 27 | adantr 276 |
. . . . . . . 8
|
| 29 | 7 | dmmptss 5167 |
. . . . . . . . . 10
|
| 30 | 29 | sseli 3180 |
. . . . . . . . 9
|
| 31 | rsp 2544 |
. . . . . . . . 9
| |
| 32 | 30, 31 | mpan9 281 |
. . . . . . . 8
|
| 33 | 28, 32 | sstrd 3194 |
. . . . . . 7
|
| 34 | 33 | ex 115 |
. . . . . 6
|
| 35 | 22, 34 | sylbir 135 |
. . . . 5
|
| 36 | 15, 20, 35 | chvar 1771 |
. . . 4
|
| 37 | 3, 36 | vtoclga 2830 |
. . 3
|
| 38 | 37, 21 | eleq2s 2291 |
. 2
|
| 39 | 38 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fv 5267 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |