ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptssdm Unicode version

Theorem fvmptssdm 5513
Description: If all the values of the mapping are subsets of a class  C, then so is any evaluation of the mapping at a value in the domain of the mapping. (Contributed by Jim Kingdon, 3-Jan-2018.)
Hypothesis
Ref Expression
fvmpt2.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
fvmptssdm  |-  ( ( D  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  D
)  C_  C )
Distinct variable groups:    x, A    x, C
Allowed substitution hints:    B( x)    D( x)    F( x)

Proof of Theorem fvmptssdm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fveq2 5429 . . . . . 6  |-  ( y  =  D  ->  ( F `  y )  =  ( F `  D ) )
21sseq1d 3131 . . . . 5  |-  ( y  =  D  ->  (
( F `  y
)  C_  C  <->  ( F `  D )  C_  C
) )
32imbi2d 229 . . . 4  |-  ( y  =  D  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) ) )
4 nfrab1 2613 . . . . . . 7  |-  F/_ x { x  e.  A  |  B  e.  _V }
54nfcri 2276 . . . . . 6  |-  F/ x  y  e.  { x  e.  A  |  B  e.  _V }
6 nfra1 2469 . . . . . . 7  |-  F/ x A. x  e.  A  B  C_  C
7 fvmpt2.1 . . . . . . . . . 10  |-  F  =  ( x  e.  A  |->  B )
8 nfmpt1 4029 . . . . . . . . . 10  |-  F/_ x
( x  e.  A  |->  B )
97, 8nfcxfr 2279 . . . . . . . . 9  |-  F/_ x F
10 nfcv 2282 . . . . . . . . 9  |-  F/_ x
y
119, 10nffv 5439 . . . . . . . 8  |-  F/_ x
( F `  y
)
12 nfcv 2282 . . . . . . . 8  |-  F/_ x C
1311, 12nfss 3095 . . . . . . 7  |-  F/ x
( F `  y
)  C_  C
146, 13nfim 1552 . . . . . 6  |-  F/ x
( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )
155, 14nfim 1552 . . . . 5  |-  F/ x
( y  e.  {
x  e.  A  |  B  e.  _V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) )
16 eleq1 2203 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  { x  e.  A  |  B  e.  _V }  <->  y  e.  { x  e.  A  |  B  e.  _V } ) )
17 fveq2 5429 . . . . . . . 8  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1817sseq1d 3131 . . . . . . 7  |-  ( x  =  y  ->  (
( F `  x
)  C_  C  <->  ( F `  y )  C_  C
) )
1918imbi2d 229 . . . . . 6  |-  ( x  =  y  ->  (
( A. x  e.  A  B  C_  C  ->  ( F `  x
)  C_  C )  <->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) ) )
2016, 19imbi12d 233 . . . . 5  |-  ( x  =  y  ->  (
( x  e.  {
x  e.  A  |  B  e.  _V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  x )  C_  C ) )  <->  ( y  e.  { x  e.  A  |  B  e.  _V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y
)  C_  C )
) ) )
217dmmpt 5042 . . . . . . 7  |-  dom  F  =  { x  e.  A  |  B  e.  _V }
2221eleq2i 2207 . . . . . 6  |-  ( x  e.  dom  F  <->  x  e.  { x  e.  A  |  B  e.  _V } )
2321rabeq2i 2686 . . . . . . . . . 10  |-  ( x  e.  dom  F  <->  ( x  e.  A  /\  B  e. 
_V ) )
247fvmpt2 5512 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  =  B )
25 eqimss 3156 . . . . . . . . . . 11  |-  ( ( F `  x )  =  B  ->  ( F `  x )  C_  B )
2624, 25syl 14 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  B  e.  _V )  ->  ( F `  x
)  C_  B )
2723, 26sylbi 120 . . . . . . . . 9  |-  ( x  e.  dom  F  -> 
( F `  x
)  C_  B )
2827adantr 274 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  x
)  C_  B )
297dmmptss 5043 . . . . . . . . . 10  |-  dom  F  C_  A
3029sseli 3098 . . . . . . . . 9  |-  ( x  e.  dom  F  ->  x  e.  A )
31 rsp 2483 . . . . . . . . 9  |-  ( A. x  e.  A  B  C_  C  ->  ( x  e.  A  ->  B  C_  C ) )
3230, 31mpan9 279 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  A. x  e.  A  B  C_  C )  ->  B  C_  C )
3328, 32sstrd 3112 . . . . . . 7  |-  ( ( x  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  x
)  C_  C )
3433ex 114 . . . . . 6  |-  ( x  e.  dom  F  -> 
( A. x  e.  A  B  C_  C  ->  ( F `  x
)  C_  C )
)
3522, 34sylbir 134 . . . . 5  |-  ( x  e.  { x  e.  A  |  B  e. 
_V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  x )  C_  C ) )
3615, 20, 35chvar 1731 . . . 4  |-  ( y  e.  { x  e.  A  |  B  e. 
_V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  y )  C_  C ) )
373, 36vtoclga 2755 . . 3  |-  ( D  e.  { x  e.  A  |  B  e. 
_V }  ->  ( A. x  e.  A  B  C_  C  ->  ( F `  D )  C_  C ) )
3837, 21eleq2s 2235 . 2  |-  ( D  e.  dom  F  -> 
( A. x  e.  A  B  C_  C  ->  ( F `  D
)  C_  C )
)
3938imp 123 1  |-  ( ( D  e.  dom  F  /\  A. x  e.  A  B  C_  C )  -> 
( F `  D
)  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417   {crab 2421   _Vcvv 2689    C_ wss 3076    |-> cmpt 3997   dom cdm 4547   ` cfv 5131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fv 5139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator