| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tfis | Unicode version | ||
| Description: Transfinite Induction
Schema.  If all ordinal numbers less than a given
       number  | 
| Ref | Expression | 
|---|---|
| tfis.1 | 
 | 
| Ref | Expression | 
|---|---|
| tfis | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrab2 3268 | 
. . . . 5
 | |
| 2 | nfcv 2339 | 
. . . . . . 7
 | |
| 3 | nfrab1 2677 | 
. . . . . . . . 9
 | |
| 4 | 2, 3 | nfss 3176 | 
. . . . . . . 8
 | 
| 5 | 3 | nfcri 2333 | 
. . . . . . . 8
 | 
| 6 | 4, 5 | nfim 1586 | 
. . . . . . 7
 | 
| 7 | dfss3 3173 | 
. . . . . . . . 9
 | |
| 8 | sseq1 3206 | 
. . . . . . . . 9
 | |
| 9 | 7, 8 | bitr3id 194 | 
. . . . . . . 8
 | 
| 10 | rabid 2673 | 
. . . . . . . . 9
 | |
| 11 | eleq1 2259 | 
. . . . . . . . 9
 | |
| 12 | 10, 11 | bitr3id 194 | 
. . . . . . . 8
 | 
| 13 | 9, 12 | imbi12d 234 | 
. . . . . . 7
 | 
| 14 | sbequ 1854 | 
. . . . . . . . . . . 12
 | |
| 15 | nfcv 2339 | 
. . . . . . . . . . . . 13
 | |
| 16 | nfcv 2339 | 
. . . . . . . . . . . . 13
 | |
| 17 | nfv 1542 | 
. . . . . . . . . . . . 13
 | |
| 18 | nfs1v 1958 | 
. . . . . . . . . . . . 13
 | |
| 19 | sbequ12 1785 | 
. . . . . . . . . . . . 13
 | |
| 20 | 15, 16, 17, 18, 19 | cbvrab 2761 | 
. . . . . . . . . . . 12
 | 
| 21 | 14, 20 | elrab2 2923 | 
. . . . . . . . . . 11
 | 
| 22 | 21 | simprbi 275 | 
. . . . . . . . . 10
 | 
| 23 | 22 | ralimi 2560 | 
. . . . . . . . 9
 | 
| 24 | tfis.1 | 
. . . . . . . . 9
 | |
| 25 | 23, 24 | syl5 32 | 
. . . . . . . 8
 | 
| 26 | 25 | anc2li 329 | 
. . . . . . 7
 | 
| 27 | 2, 6, 13, 26 | vtoclgaf 2829 | 
. . . . . 6
 | 
| 28 | 27 | rgen 2550 | 
. . . . 5
 | 
| 29 | tfi 4618 | 
. . . . 5
 | |
| 30 | 1, 28, 29 | mp2an 426 | 
. . . 4
 | 
| 31 | 30 | eqcomi 2200 | 
. . 3
 | 
| 32 | 31 | rabeq2i 2760 | 
. 2
 | 
| 33 | 32 | simprbi 275 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 | 
| This theorem is referenced by: tfis2f 4620 | 
| Copyright terms: Public domain | W3C validator |