Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfis | Unicode version |
Description: Transfinite Induction Schema. If all ordinal numbers less than a given number have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.) |
Ref | Expression |
---|---|
tfis.1 |
Ref | Expression |
---|---|
tfis |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3232 | . . . . 5 | |
2 | nfcv 2312 | . . . . . . 7 | |
3 | nfrab1 2649 | . . . . . . . . 9 | |
4 | 2, 3 | nfss 3140 | . . . . . . . 8 |
5 | 3 | nfcri 2306 | . . . . . . . 8 |
6 | 4, 5 | nfim 1565 | . . . . . . 7 |
7 | dfss3 3137 | . . . . . . . . 9 | |
8 | sseq1 3170 | . . . . . . . . 9 | |
9 | 7, 8 | bitr3id 193 | . . . . . . . 8 |
10 | rabid 2645 | . . . . . . . . 9 | |
11 | eleq1 2233 | . . . . . . . . 9 | |
12 | 10, 11 | bitr3id 193 | . . . . . . . 8 |
13 | 9, 12 | imbi12d 233 | . . . . . . 7 |
14 | sbequ 1833 | . . . . . . . . . . . 12 | |
15 | nfcv 2312 | . . . . . . . . . . . . 13 | |
16 | nfcv 2312 | . . . . . . . . . . . . 13 | |
17 | nfv 1521 | . . . . . . . . . . . . 13 | |
18 | nfs1v 1932 | . . . . . . . . . . . . 13 | |
19 | sbequ12 1764 | . . . . . . . . . . . . 13 | |
20 | 15, 16, 17, 18, 19 | cbvrab 2728 | . . . . . . . . . . . 12 |
21 | 14, 20 | elrab2 2889 | . . . . . . . . . . 11 |
22 | 21 | simprbi 273 | . . . . . . . . . 10 |
23 | 22 | ralimi 2533 | . . . . . . . . 9 |
24 | tfis.1 | . . . . . . . . 9 | |
25 | 23, 24 | syl5 32 | . . . . . . . 8 |
26 | 25 | anc2li 327 | . . . . . . 7 |
27 | 2, 6, 13, 26 | vtoclgaf 2795 | . . . . . 6 |
28 | 27 | rgen 2523 | . . . . 5 |
29 | tfi 4566 | . . . . 5 | |
30 | 1, 28, 29 | mp2an 424 | . . . 4 |
31 | 30 | eqcomi 2174 | . . 3 |
32 | 31 | rabeq2i 2727 | . 2 |
33 | 32 | simprbi 273 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wsb 1755 wcel 2141 wral 2448 crab 2452 wss 3121 con0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 |
This theorem is referenced by: tfis2f 4568 |
Copyright terms: Public domain | W3C validator |