Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfis | Unicode version |
Description: Transfinite Induction Schema. If all ordinal numbers less than a given number have a property (induction hypothesis), then all ordinal numbers have the property (conclusion). Exercise 25 of [Enderton] p. 200. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 20-Nov-2016.) |
Ref | Expression |
---|---|
tfis.1 |
Ref | Expression |
---|---|
tfis |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3213 | . . . . 5 | |
2 | nfcv 2299 | . . . . . . 7 | |
3 | nfrab1 2636 | . . . . . . . . 9 | |
4 | 2, 3 | nfss 3121 | . . . . . . . 8 |
5 | 3 | nfcri 2293 | . . . . . . . 8 |
6 | 4, 5 | nfim 1552 | . . . . . . 7 |
7 | dfss3 3118 | . . . . . . . . 9 | |
8 | sseq1 3151 | . . . . . . . . 9 | |
9 | 7, 8 | bitr3id 193 | . . . . . . . 8 |
10 | rabid 2632 | . . . . . . . . 9 | |
11 | eleq1 2220 | . . . . . . . . 9 | |
12 | 10, 11 | bitr3id 193 | . . . . . . . 8 |
13 | 9, 12 | imbi12d 233 | . . . . . . 7 |
14 | sbequ 1820 | . . . . . . . . . . . 12 | |
15 | nfcv 2299 | . . . . . . . . . . . . 13 | |
16 | nfcv 2299 | . . . . . . . . . . . . 13 | |
17 | nfv 1508 | . . . . . . . . . . . . 13 | |
18 | nfs1v 1919 | . . . . . . . . . . . . 13 | |
19 | sbequ12 1751 | . . . . . . . . . . . . 13 | |
20 | 15, 16, 17, 18, 19 | cbvrab 2710 | . . . . . . . . . . . 12 |
21 | 14, 20 | elrab2 2871 | . . . . . . . . . . 11 |
22 | 21 | simprbi 273 | . . . . . . . . . 10 |
23 | 22 | ralimi 2520 | . . . . . . . . 9 |
24 | tfis.1 | . . . . . . . . 9 | |
25 | 23, 24 | syl5 32 | . . . . . . . 8 |
26 | 25 | anc2li 327 | . . . . . . 7 |
27 | 2, 6, 13, 26 | vtoclgaf 2777 | . . . . . 6 |
28 | 27 | rgen 2510 | . . . . 5 |
29 | tfi 4540 | . . . . 5 | |
30 | 1, 28, 29 | mp2an 423 | . . . 4 |
31 | 30 | eqcomi 2161 | . . 3 |
32 | 31 | rabeq2i 2709 | . 2 |
33 | 32 | simprbi 273 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wsb 1742 wcel 2128 wral 2435 crab 2439 wss 3102 con0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-in 3108 df-ss 3115 df-uni 3773 df-tr 4063 df-iord 4326 df-on 4328 |
This theorem is referenced by: tfis2f 4542 |
Copyright terms: Public domain | W3C validator |