ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsrlempr Unicode version

Theorem suplocsrlempr 7748
Description: Lemma for suplocsr 7750. The set  B has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
Hypotheses
Ref Expression
suplocsrlem.b  |-  B  =  { w  e.  P.  |  ( C  +R  [
<. w ,  1P >. ]  ~R  )  e.  A }
suplocsrlem.ss  |-  ( ph  ->  A  C_  R. )
suplocsrlem.c  |-  ( ph  ->  C  e.  A )
suplocsrlem.ub  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
suplocsrlem.loc  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
Assertion
Ref Expression
suplocsrlempr  |-  ( ph  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w  /\  A. w  e.  P.  (
w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
Distinct variable groups:    w, A, v, y    u, A, x, z    u, B, v, w, x, z    w, C, v, x, y    u, C, z    ph, u, v, w, x, z    y,
z
Allowed substitution hints:    ph( y)    B( y)

Proof of Theorem suplocsrlempr
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 suplocsrlem.ss . . . . . . . 8  |-  ( ph  ->  A  C_  R. )
2 suplocsrlem.c . . . . . . . 8  |-  ( ph  ->  C  e.  A )
31, 2sseldd 3143 . . . . . . 7  |-  ( ph  ->  C  e.  R. )
4 0idsr 7708 . . . . . . 7  |-  ( C  e.  R.  ->  ( C  +R  0R )  =  C )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  ( C  +R  0R )  =  C )
65, 2eqeltrd 2243 . . . . 5  |-  ( ph  ->  ( C  +R  0R )  e.  A )
7 1pr 7495 . . . . 5  |-  1P  e.  P.
86, 7jctil 310 . . . 4  |-  ( ph  ->  ( 1P  e.  P.  /\  ( C  +R  0R )  e.  A )
)
9 opeq1 3758 . . . . . . . . 9  |-  ( w  =  1P  ->  <. w ,  1P >.  =  <. 1P ,  1P >. )
109eceq1d 6537 . . . . . . . 8  |-  ( w  =  1P  ->  [ <. w ,  1P >. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
11 df-0r 7672 . . . . . . . 8  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
1210, 11eqtr4di 2217 . . . . . . 7  |-  ( w  =  1P  ->  [ <. w ,  1P >. ]  ~R  =  0R )
1312oveq2d 5858 . . . . . 6  |-  ( w  =  1P  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  ( C  +R  0R ) )
1413eleq1d 2235 . . . . 5  |-  ( w  =  1P  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  ( C  +R  0R )  e.  A ) )
15 suplocsrlem.b . . . . 5  |-  B  =  { w  e.  P.  |  ( C  +R  [
<. w ,  1P >. ]  ~R  )  e.  A }
1614, 15elrab2 2885 . . . 4  |-  ( 1P  e.  B  <->  ( 1P  e.  P.  /\  ( C  +R  0R )  e.  A ) )
178, 16sylibr 133 . . 3  |-  ( ph  ->  1P  e.  B )
18 elex2 2742 . . 3  |-  ( 1P  e.  B  ->  E. v 
v  e.  B )
1917, 18syl 14 . 2  |-  ( ph  ->  E. v  v  e.  B )
20 suplocsrlem.ub . . . 4  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
21 breq1 3985 . . . . . . . . . 10  |-  ( y  =  C  ->  (
y  <R  x  <->  C  <R  x ) )
2221rspccv 2827 . . . . . . . . 9  |-  ( A. y  e.  A  y  <R  x  ->  ( C  e.  A  ->  C  <R  x ) )
232, 22mpan9 279 . . . . . . . 8  |-  ( (
ph  /\  A. y  e.  A  y  <R  x )  ->  C  <R  x )
24 0lt1sr 7706 . . . . . . . . . . . . . 14  |-  0R  <R  1R
25 0r 7691 . . . . . . . . . . . . . . 15  |-  0R  e.  R.
26 1sr 7692 . . . . . . . . . . . . . . 15  |-  1R  e.  R.
27 m1r 7693 . . . . . . . . . . . . . . 15  |-  -1R  e.  R.
28 ltasrg 7711 . . . . . . . . . . . . . . 15  |-  ( ( 0R  e.  R.  /\  1R  e.  R.  /\  -1R  e.  R. )  ->  ( 0R  <R  1R  <->  ( -1R  +R  0R )  <R  ( -1R 
+R  1R ) ) )
2925, 26, 27, 28mp3an 1327 . . . . . . . . . . . . . 14  |-  ( 0R 
<R  1R  <->  ( -1R  +R  0R )  <R  ( -1R 
+R  1R ) )
3024, 29mpbi 144 . . . . . . . . . . . . 13  |-  ( -1R 
+R  0R )  <R 
( -1R  +R  1R )
31 0idsr 7708 . . . . . . . . . . . . . 14  |-  ( -1R 
e.  R.  ->  ( -1R 
+R  0R )  =  -1R )
3227, 31ax-mp 5 . . . . . . . . . . . . 13  |-  ( -1R 
+R  0R )  =  -1R
33 m1p1sr 7701 . . . . . . . . . . . . 13  |-  ( -1R 
+R  1R )  =  0R
3430, 32, 333brtr3i 4011 . . . . . . . . . . . 12  |-  -1R  <R  0R
35 ltasrg 7711 . . . . . . . . . . . . 13  |-  ( ( -1R  e.  R.  /\  0R  e.  R.  /\  C  e.  R. )  ->  ( -1R  <R  0R  <->  ( C  +R  -1R )  <R  ( C  +R  0R ) ) )
3627, 25, 3, 35mp3an12i 1331 . . . . . . . . . . . 12  |-  ( ph  ->  ( -1R  <R  0R  <->  ( C  +R  -1R )  <R  ( C  +R  0R ) ) )
3734, 36mpbii 147 . . . . . . . . . . 11  |-  ( ph  ->  ( C  +R  -1R )  <R  ( C  +R  0R ) )
3837, 5breqtrd 4008 . . . . . . . . . 10  |-  ( ph  ->  ( C  +R  -1R )  <R  C )
39 ltsosr 7705 . . . . . . . . . . 11  |-  <R  Or  R.
40 ltrelsr 7679 . . . . . . . . . . 11  |-  <R  C_  ( R.  X.  R. )
4139, 40sotri 4999 . . . . . . . . . 10  |-  ( ( ( C  +R  -1R )  <R  C  /\  C  <R  x )  ->  ( C  +R  -1R )  <R  x )
4238, 41sylan 281 . . . . . . . . 9  |-  ( (
ph  /\  C  <R  x )  ->  ( C  +R  -1R )  <R  x
)
43 map2psrprg 7746 . . . . . . . . . . 11  |-  ( C  e.  R.  ->  (
( C  +R  -1R )  <R  x  <->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x ) )
443, 43syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  +R  -1R )  <R  x  <->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x ) )
4544adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  C  <R  x )  ->  ( ( C  +R  -1R )  <R  x 
<->  E. v  e.  P.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )
)
4642, 45mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  C  <R  x )  ->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x )
4723, 46syldan 280 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  A  y  <R  x )  ->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x )
48 breq1 3985 . . . . . . . . . . 11  |-  ( y  =  ( C  +R  [
<. w ,  1P >. ]  ~R  )  ->  (
y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
49 simpllr 524 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  ->  A. y  e.  A  y  <R  x )
50 breq2 3986 . . . . . . . . . . . . . . 15  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  y  <R  x ) )
5150ralbidv 2466 . . . . . . . . . . . . . 14  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  ( A. y  e.  A  y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  A. y  e.  A  y  <R  x ) )
5251adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  ->  ( A. y  e.  A  y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  A. y  e.  A  y  <R  x ) )
5349, 52mpbird 166 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  ->  A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )
5453adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. y  e.  A  y  <R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  /\  w  e.  B )  ->  A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )
5515rabeq2i 2723 . . . . . . . . . . . . 13  |-  ( w  e.  B  <->  ( w  e.  P.  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A ) )
5655simprbi 273 . . . . . . . . . . . 12  |-  ( w  e.  B  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A )
5756adantl 275 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. y  e.  A  y  <R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  /\  w  e.  B )  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A )
5848, 54, 57rspcdva 2835 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. y  e.  A  y  <R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  /\  w  e.  B )  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )
5958ralrimiva 2539 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  ->  A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  ) )
6059ex 114 . . . . . . . 8  |-  ( ( ( ph  /\  A. y  e.  A  y  <R  x )  /\  v  e.  P. )  ->  (
( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  ) ) )
6160reximdva 2568 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  A  y  <R  x )  ->  ( E. v  e.  P.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  E. v  e.  P.  A. w  e.  B  ( C  +R  [
<. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )
) )
6247, 61mpd 13 . . . . . 6  |-  ( (
ph  /\  A. y  e.  A  y  <R  x )  ->  E. v  e.  P.  A. w  e.  B  ( C  +R  [
<. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )
)
6362ex 114 . . . . 5  |-  ( ph  ->  ( A. y  e.  A  y  <R  x  ->  E. v  e.  P.  A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  ) ) )
6463rexlimdvw 2587 . . . 4  |-  ( ph  ->  ( E. x  e. 
R.  A. y  e.  A  y  <R  x  ->  E. v  e.  P.  A. w  e.  B  ( C  +R  [
<. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )
) )
6520, 64mpd 13 . . 3  |-  ( ph  ->  E. v  e.  P.  A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  ) )
66 elrabi 2879 . . . . . . . 8  |-  ( w  e.  { a  e. 
P.  |  ( C  +R  [ <. a ,  1P >. ]  ~R  )  e.  A }  ->  w  e.  P. )
67 opeq1 3758 . . . . . . . . . . . . 13  |-  ( w  =  a  ->  <. w ,  1P >.  =  <. a ,  1P >. )
6867eceq1d 6537 . . . . . . . . . . . 12  |-  ( w  =  a  ->  [ <. w ,  1P >. ]  ~R  =  [ <. a ,  1P >. ]  ~R  )
6968oveq2d 5858 . . . . . . . . . . 11  |-  ( w  =  a  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  ( C  +R  [
<. a ,  1P >. ]  ~R  ) )
7069eleq1d 2235 . . . . . . . . . 10  |-  ( w  =  a  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  ( C  +R  [ <. a ,  1P >. ]  ~R  )  e.  A )
)
7170cbvrabv 2725 . . . . . . . . 9  |-  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }  =  {
a  e.  P.  | 
( C  +R  [ <. a ,  1P >. ]  ~R  )  e.  A }
7215, 71eqtri 2186 . . . . . . . 8  |-  B  =  { a  e.  P.  |  ( C  +R  [
<. a ,  1P >. ]  ~R  )  e.  A }
7366, 72eleq2s 2261 . . . . . . 7  |-  ( w  e.  B  ->  w  e.  P. )
7473adantl 275 . . . . . 6  |-  ( ( ( ph  /\  v  e.  P. )  /\  w  e.  B )  ->  w  e.  P. )
75 simplr 520 . . . . . 6  |-  ( ( ( ph  /\  v  e.  P. )  /\  w  e.  B )  ->  v  e.  P. )
763ad2antrr 480 . . . . . 6  |-  ( ( ( ph  /\  v  e.  P. )  /\  w  e.  B )  ->  C  e.  R. )
77 ltpsrprg 7744 . . . . . 6  |-  ( ( w  e.  P.  /\  v  e.  P.  /\  C  e.  R. )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  w 
<P  v ) )
7874, 75, 76, 77syl3anc 1228 . . . . 5  |-  ( ( ( ph  /\  v  e.  P. )  /\  w  e.  B )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  w 
<P  v ) )
7978ralbidva 2462 . . . 4  |-  ( (
ph  /\  v  e.  P. )  ->  ( A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  A. w  e.  B  w  <P  v ) )
8079rexbidva 2463 . . 3  |-  ( ph  ->  ( E. v  e. 
P.  A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  E. v  e.  P.  A. w  e.  B  w  <P  v
) )
8165, 80mpbid 146 . 2  |-  ( ph  ->  E. v  e.  P.  A. w  e.  B  w 
<P  v )
82 suplocsrlem.loc . . 3  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
8315, 1, 2, 20, 82suplocsrlemb 7747 . 2  |-  ( ph  ->  A. v  e.  P.  A. w  e.  P.  (
v  <P  w  ->  ( E. u  e.  B  v  <P  u  \/  A. u  e.  B  u  <P  w ) ) )
8419, 81, 83suplocexpr 7666 1  |-  ( ph  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w  /\  A. w  e.  P.  (
w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   <.cop 3579   class class class wbr 3982  (class class class)co 5842   [cec 6499   P.cnp 7232   1Pc1p 7233    <P cltp 7236    ~R cer 7237   R.cnr 7238   0Rc0r 7239   1Rc1r 7240   -1Rcm1r 7241    +R cplr 7242    <R cltr 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-ltr 7671  df-0r 7672  df-1r 7673  df-m1r 7674
This theorem is referenced by:  suplocsrlem  7749
  Copyright terms: Public domain W3C validator