ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocsrlempr Unicode version

Theorem suplocsrlempr 7955
Description: Lemma for suplocsr 7957. The set  B has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
Hypotheses
Ref Expression
suplocsrlem.b  |-  B  =  { w  e.  P.  |  ( C  +R  [
<. w ,  1P >. ]  ~R  )  e.  A }
suplocsrlem.ss  |-  ( ph  ->  A  C_  R. )
suplocsrlem.c  |-  ( ph  ->  C  e.  A )
suplocsrlem.ub  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
suplocsrlem.loc  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
Assertion
Ref Expression
suplocsrlempr  |-  ( ph  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w  /\  A. w  e.  P.  (
w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
Distinct variable groups:    w, A, v, y    u, A, x, z    u, B, v, w, x, z    w, C, v, x, y    u, C, z    ph, u, v, w, x, z    y,
z
Allowed substitution hints:    ph( y)    B( y)

Proof of Theorem suplocsrlempr
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 suplocsrlem.ss . . . . . . . 8  |-  ( ph  ->  A  C_  R. )
2 suplocsrlem.c . . . . . . . 8  |-  ( ph  ->  C  e.  A )
31, 2sseldd 3202 . . . . . . 7  |-  ( ph  ->  C  e.  R. )
4 0idsr 7915 . . . . . . 7  |-  ( C  e.  R.  ->  ( C  +R  0R )  =  C )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  ( C  +R  0R )  =  C )
65, 2eqeltrd 2284 . . . . 5  |-  ( ph  ->  ( C  +R  0R )  e.  A )
7 1pr 7702 . . . . 5  |-  1P  e.  P.
86, 7jctil 312 . . . 4  |-  ( ph  ->  ( 1P  e.  P.  /\  ( C  +R  0R )  e.  A )
)
9 opeq1 3833 . . . . . . . . 9  |-  ( w  =  1P  ->  <. w ,  1P >.  =  <. 1P ,  1P >. )
109eceq1d 6679 . . . . . . . 8  |-  ( w  =  1P  ->  [ <. w ,  1P >. ]  ~R  =  [ <. 1P ,  1P >. ]  ~R  )
11 df-0r 7879 . . . . . . . 8  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
1210, 11eqtr4di 2258 . . . . . . 7  |-  ( w  =  1P  ->  [ <. w ,  1P >. ]  ~R  =  0R )
1312oveq2d 5983 . . . . . 6  |-  ( w  =  1P  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  ( C  +R  0R ) )
1413eleq1d 2276 . . . . 5  |-  ( w  =  1P  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  ( C  +R  0R )  e.  A ) )
15 suplocsrlem.b . . . . 5  |-  B  =  { w  e.  P.  |  ( C  +R  [
<. w ,  1P >. ]  ~R  )  e.  A }
1614, 15elrab2 2939 . . . 4  |-  ( 1P  e.  B  <->  ( 1P  e.  P.  /\  ( C  +R  0R )  e.  A ) )
178, 16sylibr 134 . . 3  |-  ( ph  ->  1P  e.  B )
18 elex2 2793 . . 3  |-  ( 1P  e.  B  ->  E. v 
v  e.  B )
1917, 18syl 14 . 2  |-  ( ph  ->  E. v  v  e.  B )
20 suplocsrlem.ub . . . 4  |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
<R  x )
21 breq1 4062 . . . . . . . . . 10  |-  ( y  =  C  ->  (
y  <R  x  <->  C  <R  x ) )
2221rspccv 2881 . . . . . . . . 9  |-  ( A. y  e.  A  y  <R  x  ->  ( C  e.  A  ->  C  <R  x ) )
232, 22mpan9 281 . . . . . . . 8  |-  ( (
ph  /\  A. y  e.  A  y  <R  x )  ->  C  <R  x )
24 0lt1sr 7913 . . . . . . . . . . . . . 14  |-  0R  <R  1R
25 0r 7898 . . . . . . . . . . . . . . 15  |-  0R  e.  R.
26 1sr 7899 . . . . . . . . . . . . . . 15  |-  1R  e.  R.
27 m1r 7900 . . . . . . . . . . . . . . 15  |-  -1R  e.  R.
28 ltasrg 7918 . . . . . . . . . . . . . . 15  |-  ( ( 0R  e.  R.  /\  1R  e.  R.  /\  -1R  e.  R. )  ->  ( 0R  <R  1R  <->  ( -1R  +R  0R )  <R  ( -1R 
+R  1R ) ) )
2925, 26, 27, 28mp3an 1350 . . . . . . . . . . . . . 14  |-  ( 0R 
<R  1R  <->  ( -1R  +R  0R )  <R  ( -1R 
+R  1R ) )
3024, 29mpbi 145 . . . . . . . . . . . . 13  |-  ( -1R 
+R  0R )  <R 
( -1R  +R  1R )
31 0idsr 7915 . . . . . . . . . . . . . 14  |-  ( -1R 
e.  R.  ->  ( -1R 
+R  0R )  =  -1R )
3227, 31ax-mp 5 . . . . . . . . . . . . 13  |-  ( -1R 
+R  0R )  =  -1R
33 m1p1sr 7908 . . . . . . . . . . . . 13  |-  ( -1R 
+R  1R )  =  0R
3430, 32, 333brtr3i 4088 . . . . . . . . . . . 12  |-  -1R  <R  0R
35 ltasrg 7918 . . . . . . . . . . . . 13  |-  ( ( -1R  e.  R.  /\  0R  e.  R.  /\  C  e.  R. )  ->  ( -1R  <R  0R  <->  ( C  +R  -1R )  <R  ( C  +R  0R ) ) )
3627, 25, 3, 35mp3an12i 1354 . . . . . . . . . . . 12  |-  ( ph  ->  ( -1R  <R  0R  <->  ( C  +R  -1R )  <R  ( C  +R  0R ) ) )
3734, 36mpbii 148 . . . . . . . . . . 11  |-  ( ph  ->  ( C  +R  -1R )  <R  ( C  +R  0R ) )
3837, 5breqtrd 4085 . . . . . . . . . 10  |-  ( ph  ->  ( C  +R  -1R )  <R  C )
39 ltsosr 7912 . . . . . . . . . . 11  |-  <R  Or  R.
40 ltrelsr 7886 . . . . . . . . . . 11  |-  <R  C_  ( R.  X.  R. )
4139, 40sotri 5097 . . . . . . . . . 10  |-  ( ( ( C  +R  -1R )  <R  C  /\  C  <R  x )  ->  ( C  +R  -1R )  <R  x )
4238, 41sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  C  <R  x )  ->  ( C  +R  -1R )  <R  x
)
43 map2psrprg 7953 . . . . . . . . . . 11  |-  ( C  e.  R.  ->  (
( C  +R  -1R )  <R  x  <->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x ) )
443, 43syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  +R  -1R )  <R  x  <->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x ) )
4544adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  C  <R  x )  ->  ( ( C  +R  -1R )  <R  x 
<->  E. v  e.  P.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )
)
4642, 45mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  C  <R  x )  ->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x )
4723, 46syldan 282 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  A  y  <R  x )  ->  E. v  e.  P.  ( C  +R  [
<. v ,  1P >. ]  ~R  )  =  x )
48 breq1 4062 . . . . . . . . . . 11  |-  ( y  =  ( C  +R  [
<. w ,  1P >. ]  ~R  )  ->  (
y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  ) ) )
49 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  ->  A. y  e.  A  y  <R  x )
50 breq2 4063 . . . . . . . . . . . . . . 15  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  ( y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  y  <R  x ) )
5150ralbidv 2508 . . . . . . . . . . . . . 14  |-  ( ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  ( A. y  e.  A  y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  A. y  e.  A  y  <R  x ) )
5251adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  ->  ( A. y  e.  A  y  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  A. y  e.  A  y  <R  x ) )
5349, 52mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  ->  A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )
5453adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. y  e.  A  y  <R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  /\  w  e.  B )  ->  A. y  e.  A  y  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )
5515rabeq2i 2773 . . . . . . . . . . . . 13  |-  ( w  e.  B  <->  ( w  e.  P.  /\  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A ) )
5655simprbi 275 . . . . . . . . . . . 12  |-  ( w  e.  B  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A )
5756adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
A. y  e.  A  y  <R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  /\  w  e.  B )  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A )
5848, 54, 57rspcdva 2889 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
A. y  e.  A  y  <R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  /\  w  e.  B )  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  ) )
5958ralrimiva 2581 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. y  e.  A  y 
<R  x )  /\  v  e.  P. )  /\  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x )  ->  A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R 
( C  +R  [ <. v ,  1P >. ]  ~R  ) )
6059ex 115 . . . . . . . 8  |-  ( ( ( ph  /\  A. y  e.  A  y  <R  x )  /\  v  e.  P. )  ->  (
( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  ) ) )
6160reximdva 2610 . . . . . . 7  |-  ( (
ph  /\  A. y  e.  A  y  <R  x )  ->  ( E. v  e.  P.  ( C  +R  [ <. v ,  1P >. ]  ~R  )  =  x  ->  E. v  e.  P.  A. w  e.  B  ( C  +R  [
<. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )
) )
6247, 61mpd 13 . . . . . 6  |-  ( (
ph  /\  A. y  e.  A  y  <R  x )  ->  E. v  e.  P.  A. w  e.  B  ( C  +R  [
<. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )
)
6362ex 115 . . . . 5  |-  ( ph  ->  ( A. y  e.  A  y  <R  x  ->  E. v  e.  P.  A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  ) ) )
6463rexlimdvw 2629 . . . 4  |-  ( ph  ->  ( E. x  e. 
R.  A. y  e.  A  y  <R  x  ->  E. v  e.  P.  A. w  e.  B  ( C  +R  [
<. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )
) )
6520, 64mpd 13 . . 3  |-  ( ph  ->  E. v  e.  P.  A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  ) )
66 elrabi 2933 . . . . . . . 8  |-  ( w  e.  { a  e. 
P.  |  ( C  +R  [ <. a ,  1P >. ]  ~R  )  e.  A }  ->  w  e.  P. )
67 opeq1 3833 . . . . . . . . . . . . 13  |-  ( w  =  a  ->  <. w ,  1P >.  =  <. a ,  1P >. )
6867eceq1d 6679 . . . . . . . . . . . 12  |-  ( w  =  a  ->  [ <. w ,  1P >. ]  ~R  =  [ <. a ,  1P >. ]  ~R  )
6968oveq2d 5983 . . . . . . . . . . 11  |-  ( w  =  a  ->  ( C  +R  [ <. w ,  1P >. ]  ~R  )  =  ( C  +R  [
<. a ,  1P >. ]  ~R  ) )
7069eleq1d 2276 . . . . . . . . . 10  |-  ( w  =  a  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A  <->  ( C  +R  [ <. a ,  1P >. ]  ~R  )  e.  A )
)
7170cbvrabv 2775 . . . . . . . . 9  |-  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }  =  {
a  e.  P.  | 
( C  +R  [ <. a ,  1P >. ]  ~R  )  e.  A }
7215, 71eqtri 2228 . . . . . . . 8  |-  B  =  { a  e.  P.  |  ( C  +R  [
<. a ,  1P >. ]  ~R  )  e.  A }
7366, 72eleq2s 2302 . . . . . . 7  |-  ( w  e.  B  ->  w  e.  P. )
7473adantl 277 . . . . . 6  |-  ( ( ( ph  /\  v  e.  P. )  /\  w  e.  B )  ->  w  e.  P. )
75 simplr 528 . . . . . 6  |-  ( ( ( ph  /\  v  e.  P. )  /\  w  e.  B )  ->  v  e.  P. )
763ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  v  e.  P. )  /\  w  e.  B )  ->  C  e.  R. )
77 ltpsrprg 7951 . . . . . 6  |-  ( ( w  e.  P.  /\  v  e.  P.  /\  C  e.  R. )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  w 
<P  v ) )
7874, 75, 76, 77syl3anc 1250 . . . . 5  |-  ( ( ( ph  /\  v  e.  P. )  /\  w  e.  B )  ->  (
( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  w 
<P  v ) )
7978ralbidva 2504 . . . 4  |-  ( (
ph  /\  v  e.  P. )  ->  ( A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [ <. v ,  1P >. ]  ~R  )  <->  A. w  e.  B  w  <P  v ) )
8079rexbidva 2505 . . 3  |-  ( ph  ->  ( E. v  e. 
P.  A. w  e.  B  ( C  +R  [ <. w ,  1P >. ]  ~R  )  <R  ( C  +R  [
<. v ,  1P >. ]  ~R  )  <->  E. v  e.  P.  A. w  e.  B  w  <P  v
) )
8165, 80mpbid 147 . 2  |-  ( ph  ->  E. v  e.  P.  A. w  e.  B  w 
<P  v )
82 suplocsrlem.loc . . 3  |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  (
x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )
8315, 1, 2, 20, 82suplocsrlemb 7954 . 2  |-  ( ph  ->  A. v  e.  P.  A. w  e.  P.  (
v  <P  w  ->  ( E. u  e.  B  v  <P  u  \/  A. u  e.  B  u  <P  w ) ) )
8419, 81, 83suplocexpr 7873 1  |-  ( ph  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w  /\  A. w  e.  P.  (
w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   E.wrex 2487   {crab 2490    C_ wss 3174   <.cop 3646   class class class wbr 4059  (class class class)co 5967   [cec 6641   P.cnp 7439   1Pc1p 7440    <P cltp 7443    ~R cer 7444   R.cnr 7445   0Rc0r 7446   1Rc1r 7447   -1Rcm1r 7448    +R cplr 7449    <R cltr 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-imp 7617  df-iltp 7618  df-enr 7874  df-nr 7875  df-plr 7876  df-mr 7877  df-ltr 7878  df-0r 7879  df-1r 7880  df-m1r 7881
This theorem is referenced by:  suplocsrlem  7956
  Copyright terms: Public domain W3C validator