ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqbidva Unicode version

Theorem rabeqbidva 2726
Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
rabeqbidva.1  |-  ( ph  ->  A  =  B )
rabeqbidva.2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
rabeqbidva  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem rabeqbidva
StepHypRef Expression
1 rabeqbidva.2 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
21rabbidva 2718 . 2  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  A  |  ch } )
3 rabeqbidva.1 . . 3  |-  ( ph  ->  A  =  B )
4 rabeq 2722 . . 3  |-  ( A  =  B  ->  { x  e.  A  |  ch }  =  { x  e.  B  |  ch } )
53, 4syl 14 . 2  |-  ( ph  ->  { x  e.  A  |  ch }  =  {
x  e.  B  |  ch } )
62, 5eqtrd 2203 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator