ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabid Unicode version

Theorem rabid 2707
Description: An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.)
Assertion
Ref Expression
rabid  |-  ( x  e.  { x  e.  A  |  ph }  <->  ( x  e.  A  /\  ph ) )

Proof of Theorem rabid
StepHypRef Expression
1 df-rab 2517 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
21abeq2i 2340 1  |-  ( x  e.  { x  e.  A  |  ph }  <->  ( x  e.  A  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   {crab 2512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-rab 2517
This theorem is referenced by:  rabeq2i  2796  rabn0m  3519  repizf2lem  4245  rabxfrd  4560  onintrab2im  4610  tfis  4675  nnwosdc  12560  imasnopn  14973
  Copyright terms: Public domain W3C validator