![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabid | Unicode version |
Description: An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.) |
Ref | Expression |
---|---|
rabid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2464 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | abeq2i 2288 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-rab 2464 |
This theorem is referenced by: rabeq2i 2736 rabn0m 3452 repizf2lem 4163 rabxfrd 4471 onintrab2im 4519 tfis 4584 nnwosdc 12042 imasnopn 13884 |
Copyright terms: Public domain | W3C validator |